Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdfval Structured version   Unicode version

Theorem mapdfval 32487
Description: Projectivity from vector space H to dual space. (Contributed by NM, 25-Jan-2015.)
Hypotheses
Ref Expression
mapdval.h  |-  H  =  ( LHyp `  K
)
mapdval.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdval.s  |-  S  =  ( LSubSp `  U )
mapdval.f  |-  F  =  (LFnl `  U )
mapdval.l  |-  L  =  (LKer `  U )
mapdval.o  |-  O  =  ( ( ocH `  K
) `  W )
mapdval.m  |-  M  =  ( (mapd `  K
) `  W )
Assertion
Ref Expression
mapdfval  |-  ( ( K  e.  X  /\  W  e.  H )  ->  M  =  ( s  e.  S  |->  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  s ) } ) )
Distinct variable groups:    f, s, K    f, F    S, s    f, W, s
Allowed substitution hints:    S( f)    U( f, s)    F( s)    H( f, s)    L( f, s)    M( f, s)    O( f, s)    X( f, s)

Proof of Theorem mapdfval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 mapdval.m . . 3  |-  M  =  ( (mapd `  K
) `  W )
2 mapdval.h . . . . 5  |-  H  =  ( LHyp `  K
)
32mapdffval 32486 . . . 4  |-  ( K  e.  X  ->  (mapd `  K )  =  ( w  e.  H  |->  ( s  e.  ( LSubSp `  ( ( DVecH `  K
) `  w )
)  |->  { f  e.  (LFnl `  ( ( DVecH `  K ) `  w ) )  |  ( ( ( ( ocH `  K ) `
 w ) `  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `  f )  /\  (
( ( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) )  C_  s ) } ) ) )
43fveq1d 5732 . . 3  |-  ( K  e.  X  ->  (
(mapd `  K ) `  W )  =  ( ( w  e.  H  |->  ( s  e.  (
LSubSp `  ( ( DVecH `  K ) `  w
) )  |->  { f  e.  (LFnl `  (
( DVecH `  K ) `  w ) )  |  ( ( ( ( ocH `  K ) `
 w ) `  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `  f )  /\  (
( ( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) )  C_  s ) } ) ) `  W ) )
51, 4syl5eq 2482 . 2  |-  ( K  e.  X  ->  M  =  ( ( w  e.  H  |->  ( s  e.  ( LSubSp `  (
( DVecH `  K ) `  w ) )  |->  { f  e.  (LFnl `  ( ( DVecH `  K
) `  w )
)  |  ( ( ( ( ocH `  K
) `  w ) `  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `  f )  /\  (
( ( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) )  C_  s ) } ) ) `  W ) )
6 fveq2 5730 . . . . . . 7  |-  ( w  =  W  ->  (
( DVecH `  K ) `  w )  =  ( ( DVecH `  K ) `  W ) )
7 mapdval.u . . . . . . 7  |-  U  =  ( ( DVecH `  K
) `  W )
86, 7syl6eqr 2488 . . . . . 6  |-  ( w  =  W  ->  (
( DVecH `  K ) `  w )  =  U )
98fveq2d 5734 . . . . 5  |-  ( w  =  W  ->  ( LSubSp `
 ( ( DVecH `  K ) `  w
) )  =  (
LSubSp `  U ) )
10 mapdval.s . . . . 5  |-  S  =  ( LSubSp `  U )
119, 10syl6eqr 2488 . . . 4  |-  ( w  =  W  ->  ( LSubSp `
 ( ( DVecH `  K ) `  w
) )  =  S )
128fveq2d 5734 . . . . . 6  |-  ( w  =  W  ->  (LFnl `  ( ( DVecH `  K
) `  w )
)  =  (LFnl `  U ) )
13 mapdval.f . . . . . 6  |-  F  =  (LFnl `  U )
1412, 13syl6eqr 2488 . . . . 5  |-  ( w  =  W  ->  (LFnl `  ( ( DVecH `  K
) `  w )
)  =  F )
15 fveq2 5730 . . . . . . . . 9  |-  ( w  =  W  ->  (
( ocH `  K
) `  w )  =  ( ( ocH `  K ) `  W
) )
16 mapdval.o . . . . . . . . 9  |-  O  =  ( ( ocH `  K
) `  W )
1715, 16syl6eqr 2488 . . . . . . . 8  |-  ( w  =  W  ->  (
( ocH `  K
) `  w )  =  O )
188fveq2d 5734 . . . . . . . . . . 11  |-  ( w  =  W  ->  (LKer `  ( ( DVecH `  K
) `  w )
)  =  (LKer `  U ) )
19 mapdval.l . . . . . . . . . . 11  |-  L  =  (LKer `  U )
2018, 19syl6eqr 2488 . . . . . . . . . 10  |-  ( w  =  W  ->  (LKer `  ( ( DVecH `  K
) `  w )
)  =  L )
2120fveq1d 5732 . . . . . . . . 9  |-  ( w  =  W  ->  (
(LKer `  ( ( DVecH `  K ) `  w ) ) `  f )  =  ( L `  f ) )
2217, 21fveq12d 5736 . . . . . . . 8  |-  ( w  =  W  ->  (
( ( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) )  =  ( O `  ( L `  f )
) )
2317, 22fveq12d 5736 . . . . . . 7  |-  ( w  =  W  ->  (
( ( ocH `  K
) `  w ) `  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) )  =  ( O `  ( O `
 ( L `  f ) ) ) )
2423, 21eqeq12d 2452 . . . . . 6  |-  ( w  =  W  ->  (
( ( ( ocH `  K ) `  w
) `  ( (
( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) ) )  =  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )  <->  ( O `  ( O `
 ( L `  f ) ) )  =  ( L `  f ) ) )
2522sseq1d 3377 . . . . . 6  |-  ( w  =  W  ->  (
( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
)  C_  s  <->  ( O `  ( L `  f
) )  C_  s
) )
2624, 25anbi12d 693 . . . . 5  |-  ( w  =  W  ->  (
( ( ( ( ocH `  K ) `
 w ) `  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `  f )  /\  (
( ( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) )  C_  s )  <->  ( ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
)  /\  ( O `  ( L `  f
) )  C_  s
) ) )
2714, 26rabeqbidv 2953 . . . 4  |-  ( w  =  W  ->  { f  e.  (LFnl `  (
( DVecH `  K ) `  w ) )  |  ( ( ( ( ocH `  K ) `
 w ) `  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `  f )  /\  (
( ( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) )  C_  s ) }  =  { f  e.  F  |  ( ( O `
 ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  s ) } )
2811, 27mpteq12dv 4289 . . 3  |-  ( w  =  W  ->  (
s  e.  ( LSubSp `  ( ( DVecH `  K
) `  w )
)  |->  { f  e.  (LFnl `  ( ( DVecH `  K ) `  w ) )  |  ( ( ( ( ocH `  K ) `
 w ) `  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `  f )  /\  (
( ( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) )  C_  s ) } )  =  ( s  e.  S  |->  { f  e.  F  |  ( ( O `  ( O `
 ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  s ) } ) )
29 eqid 2438 . . 3  |-  ( w  e.  H  |->  ( s  e.  ( LSubSp `  (
( DVecH `  K ) `  w ) )  |->  { f  e.  (LFnl `  ( ( DVecH `  K
) `  w )
)  |  ( ( ( ( ocH `  K
) `  w ) `  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `  f )  /\  (
( ( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) )  C_  s ) } ) )  =  ( w  e.  H  |->  ( s  e.  ( LSubSp `  (
( DVecH `  K ) `  w ) )  |->  { f  e.  (LFnl `  ( ( DVecH `  K
) `  w )
)  |  ( ( ( ( ocH `  K
) `  w ) `  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `  f )  /\  (
( ( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) )  C_  s ) } ) )
30 fvex 5744 . . . . 5  |-  ( LSubSp `  U )  e.  _V
3110, 30eqeltri 2508 . . . 4  |-  S  e. 
_V
3231mptex 5968 . . 3  |-  ( s  e.  S  |->  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  s ) } )  e.  _V
3328, 29, 32fvmpt 5808 . 2  |-  ( W  e.  H  ->  (
( w  e.  H  |->  ( s  e.  (
LSubSp `  ( ( DVecH `  K ) `  w
) )  |->  { f  e.  (LFnl `  (
( DVecH `  K ) `  w ) )  |  ( ( ( ( ocH `  K ) `
 w ) `  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `  f )  /\  (
( ( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) )  C_  s ) } ) ) `  W )  =  ( s  e.  S  |->  { f  e.  F  |  ( ( O `  ( O `
 ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  s ) } ) )
345, 33sylan9eq 2490 1  |-  ( ( K  e.  X  /\  W  e.  H )  ->  M  =  ( s  e.  S  |->  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  s ) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   {crab 2711   _Vcvv 2958    C_ wss 3322    e. cmpt 4268   ` cfv 5456   LSubSpclss 16010  LFnlclfn 29917  LKerclk 29945   LHypclh 30843   DVecHcdvh 31938   ocHcoch 32207  mapdcmpd 32484
This theorem is referenced by:  mapdval  32488  mapd1o  32508
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pr 4405
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-mapd 32485
  Copyright terms: Public domain W3C validator