Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh6hN Structured version   Unicode version

Theorem mapdh6hN 32478
Description: Lemmma for mapdh6N 32482. Part (6) of [Baer] p. 48 line 2. (Contributed by NM, 1-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh.q  |-  Q  =  ( 0g `  C
)
mapdh.i  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
mapdh.h  |-  H  =  ( LHyp `  K
)
mapdh.m  |-  M  =  ( (mapd `  K
) `  W )
mapdh.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdh.v  |-  V  =  ( Base `  U
)
mapdh.s  |-  .-  =  ( -g `  U )
mapdhc.o  |-  .0.  =  ( 0g `  U )
mapdh.n  |-  N  =  ( LSpan `  U )
mapdh.c  |-  C  =  ( (LCDual `  K
) `  W )
mapdh.d  |-  D  =  ( Base `  C
)
mapdh.r  |-  R  =  ( -g `  C
)
mapdh.j  |-  J  =  ( LSpan `  C )
mapdh.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdhc.f  |-  ( ph  ->  F  e.  D )
mapdh.mn  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
mapdhcl.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
mapdh.p  |-  .+  =  ( +g  `  U )
mapdh.a  |-  .+b  =  ( +g  `  C )
mapdh6d.xn  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
mapdh6d.yz  |-  ( ph  ->  ( N `  { Y } )  =  ( N `  { Z } ) )
mapdh6d.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
mapdh6d.z  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
mapdh6d.w  |-  ( ph  ->  w  e.  ( V 
\  {  .0.  }
) )
mapdh6d.wn  |-  ( ph  ->  -.  w  e.  ( N `  { X ,  Y } ) )
Assertion
Ref Expression
mapdh6hN  |-  ( ph  ->  ( I `  <. X ,  F ,  ( Y  .+  Z )
>. )  =  (
( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
Distinct variable groups:    x, D, h    h, F, x    x, J    x, M    x, N    x,  .0.    x, Q    x, R    x, 
.-    h, X, x    h, Y, x    ph, h    .0. , h    C, h    D, h   
h, J    h, M    h, N    R, h    U, h    .- , h    w, h    h, Z, x    .+b , h    h, I, x    .+ , h, x   
x, w
Allowed substitution hints:    ph( x, w)    C( x, w)    D( w)    .+ ( w)    .+b ( x, w)    Q( w, h)    R( w)    U( x, w)    F( w)    H( x, w, h)    I( w)    J( w)    K( x, w, h)    M( w)    .- ( w)    N( w)    V( x, w, h)    W( x, w, h)    X( w)    Y( w)    .0. ( w)    Z( w)

Proof of Theorem mapdh6hN
StepHypRef Expression
1 mapdh.q . . . 4  |-  Q  =  ( 0g `  C
)
2 mapdh.i . . . 4  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
3 mapdh.h . . . 4  |-  H  =  ( LHyp `  K
)
4 mapdh.m . . . 4  |-  M  =  ( (mapd `  K
) `  W )
5 mapdh.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
6 mapdh.v . . . 4  |-  V  =  ( Base `  U
)
7 mapdh.s . . . 4  |-  .-  =  ( -g `  U )
8 mapdhc.o . . . 4  |-  .0.  =  ( 0g `  U )
9 mapdh.n . . . 4  |-  N  =  ( LSpan `  U )
10 mapdh.c . . . 4  |-  C  =  ( (LCDual `  K
) `  W )
11 mapdh.d . . . 4  |-  D  =  ( Base `  C
)
12 mapdh.r . . . 4  |-  R  =  ( -g `  C
)
13 mapdh.j . . . 4  |-  J  =  ( LSpan `  C )
14 mapdh.k . . . 4  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
15 mapdhc.f . . . 4  |-  ( ph  ->  F  e.  D )
16 mapdh.mn . . . 4  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
17 mapdhcl.x . . . 4  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
18 mapdh.p . . . 4  |-  .+  =  ( +g  `  U )
19 mapdh.a . . . 4  |-  .+b  =  ( +g  `  C )
20 mapdh6d.xn . . . 4  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
21 mapdh6d.yz . . . 4  |-  ( ph  ->  ( N `  { Y } )  =  ( N `  { Z } ) )
22 mapdh6d.y . . . 4  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
23 mapdh6d.z . . . 4  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
24 mapdh6d.w . . . 4  |-  ( ph  ->  w  e.  ( V 
\  {  .0.  }
) )
25 mapdh6d.wn . . . 4  |-  ( ph  ->  -.  w  e.  ( N `  { X ,  Y } ) )
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25mapdh6gN 32477 . . 3  |-  ( ph  ->  ( ( I `  <. X ,  F ,  w >. )  .+b  (
I `  <. X ,  F ,  ( Y  .+  Z ) >. )
)  =  ( ( ( I `  <. X ,  F ,  w >. )  .+b  ( I `  <. X ,  F ,  Y >. ) )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
273, 10, 14lcdlmod 32327 . . . 4  |-  ( ph  ->  C  e.  LMod )
2824eldifad 3324 . . . . 5  |-  ( ph  ->  w  e.  V )
293, 5, 14dvhlvec 31844 . . . . . . . 8  |-  ( ph  ->  U  e.  LVec )
3017eldifad 3324 . . . . . . . 8  |-  ( ph  ->  X  e.  V )
3122eldifad 3324 . . . . . . . 8  |-  ( ph  ->  Y  e.  V )
326, 9, 29, 28, 30, 31, 25lspindpi 16196 . . . . . . 7  |-  ( ph  ->  ( ( N `  { w } )  =/=  ( N `  { X } )  /\  ( N `  { w } )  =/=  ( N `  { Y } ) ) )
3332simpld 446 . . . . . 6  |-  ( ph  ->  ( N `  {
w } )  =/=  ( N `  { X } ) )
3433necomd 2681 . . . . 5  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { w } ) )
351, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 28, 34mapdhcl 32462 . . . 4  |-  ( ph  ->  ( I `  <. X ,  F ,  w >. )  e.  D )
3623eldifad 3324 . . . . . . 7  |-  ( ph  ->  Z  e.  V )
376, 9, 29, 30, 31, 36, 20lspindpi 16196 . . . . . 6  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Y } )  /\  ( N `  { X } )  =/=  ( N `  { Z } ) ) )
3837simpld 446 . . . . 5  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
391, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 31, 38mapdhcl 32462 . . . 4  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  e.  D )
4037simprd 450 . . . . 5  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Z } ) )
411, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 36, 40mapdhcl 32462 . . . 4  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  e.  D )
4211, 19lmodass 15957 . . . 4  |-  ( ( C  e.  LMod  /\  (
( I `  <. X ,  F ,  w >. )  e.  D  /\  ( I `  <. X ,  F ,  Y >. )  e.  D  /\  ( I `  <. X ,  F ,  Z >. )  e.  D ) )  ->  ( (
( I `  <. X ,  F ,  w >. )  .+b  ( I `  <. X ,  F ,  Y >. ) )  .+b  ( I `  <. X ,  F ,  Z >. ) )  =  ( ( I `  <. X ,  F ,  w >. )  .+b  ( (
I `  <. X ,  F ,  Y >. ) 
.+b  ( I `  <. X ,  F ,  Z >. ) ) ) )
4327, 35, 39, 41, 42syl13anc 1186 . . 3  |-  ( ph  ->  ( ( ( I `
 <. X ,  F ,  w >. )  .+b  (
I `  <. X ,  F ,  Y >. ) )  .+b  ( I `  <. X ,  F ,  Z >. ) )  =  ( ( I `  <. X ,  F ,  w >. )  .+b  (
( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) ) )
4426, 43eqtrd 2467 . 2  |-  ( ph  ->  ( ( I `  <. X ,  F ,  w >. )  .+b  (
I `  <. X ,  F ,  ( Y  .+  Z ) >. )
)  =  ( ( I `  <. X ,  F ,  w >. ) 
.+b  ( ( I `
 <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) ) ) )
453, 5, 14dvhlmod 31845 . . . . 5  |-  ( ph  ->  U  e.  LMod )
466, 18lmodvacl 15956 . . . . 5  |-  ( ( U  e.  LMod  /\  Y  e.  V  /\  Z  e.  V )  ->  ( Y  .+  Z )  e.  V )
4745, 31, 36, 46syl3anc 1184 . . . 4  |-  ( ph  ->  ( Y  .+  Z
)  e.  V )
486, 18, 8, 9, 29, 17, 22, 23, 24, 21, 38, 25mapdindp1 32455 . . . 4  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { ( Y  .+  Z ) } ) )
491, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 47, 48mapdhcl 32462 . . 3  |-  ( ph  ->  ( I `  <. X ,  F ,  ( Y  .+  Z )
>. )  e.  D
)
5011, 19lmodvacl 15956 . . . 4  |-  ( ( C  e.  LMod  /\  (
I `  <. X ,  F ,  Y >. )  e.  D  /\  (
I `  <. X ,  F ,  Z >. )  e.  D )  -> 
( ( I `  <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) )  e.  D )
5127, 39, 41, 50syl3anc 1184 . . 3  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) )  e.  D )
5211, 19lmodlcan 15958 . . 3  |-  ( ( C  e.  LMod  /\  (
( I `  <. X ,  F ,  ( Y  .+  Z )
>. )  e.  D  /\  ( ( I `  <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) )  e.  D  /\  ( I `  <. X ,  F ,  w >. )  e.  D ) )  ->  ( (
( I `  <. X ,  F ,  w >. )  .+b  ( I `  <. X ,  F ,  ( Y  .+  Z ) >. )
)  =  ( ( I `  <. X ,  F ,  w >. ) 
.+b  ( ( I `
 <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) ) )  <->  ( I `  <. X ,  F ,  ( Y  .+  Z ) >. )  =  ( ( I `
 <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) ) ) )
5327, 49, 51, 35, 52syl13anc 1186 . 2  |-  ( ph  ->  ( ( ( I `
 <. X ,  F ,  w >. )  .+b  (
I `  <. X ,  F ,  ( Y  .+  Z ) >. )
)  =  ( ( I `  <. X ,  F ,  w >. ) 
.+b  ( ( I `
 <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) ) )  <->  ( I `  <. X ,  F ,  ( Y  .+  Z ) >. )  =  ( ( I `
 <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) ) ) )
5444, 53mpbid 202 1  |-  ( ph  ->  ( I `  <. X ,  F ,  ( Y  .+  Z )
>. )  =  (
( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   _Vcvv 2948    \ cdif 3309   ifcif 3731   {csn 3806   {cpr 3807   <.cotp 3810    e. cmpt 4258   ` cfv 5446  (class class class)co 6073   1stc1st 6339   2ndc2nd 6340   iota_crio 6534   Basecbs 13461   +g cplusg 13521   0gc0g 13715   -gcsg 14680   LModclmod 15942   LSpanclspn 16039   HLchlt 30085   LHypclh 30718   DVecHcdvh 31813  LCDualclcd 32321  mapdcmpd 32359
This theorem is referenced by:  mapdh6iN  32479
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-fal 1329  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-ot 3816  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-tpos 6471  df-undef 6535  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-sca 13537  df-vsca 13538  df-0g 13719  df-mre 13803  df-mrc 13804  df-acs 13806  df-poset 14395  df-plt 14407  df-lub 14423  df-glb 14424  df-join 14425  df-meet 14426  df-p0 14460  df-p1 14461  df-lat 14467  df-clat 14529  df-mnd 14682  df-submnd 14731  df-grp 14804  df-minusg 14805  df-sbg 14806  df-subg 14933  df-cntz 15108  df-oppg 15134  df-lsm 15262  df-cmn 15406  df-abl 15407  df-mgp 15641  df-rng 15655  df-ur 15657  df-oppr 15720  df-dvdsr 15738  df-unit 15739  df-invr 15769  df-dvr 15780  df-drng 15829  df-lmod 15944  df-lss 16001  df-lsp 16040  df-lvec 16167  df-lsatoms 29711  df-lshyp 29712  df-lcv 29754  df-lfl 29793  df-lkr 29821  df-ldual 29859  df-oposet 29911  df-ol 29913  df-oml 29914  df-covers 30001  df-ats 30002  df-atl 30033  df-cvlat 30057  df-hlat 30086  df-llines 30232  df-lplanes 30233  df-lvols 30234  df-lines 30235  df-psubsp 30237  df-pmap 30238  df-padd 30530  df-lhyp 30722  df-laut 30723  df-ldil 30838  df-ltrn 30839  df-trl 30893  df-tgrp 31477  df-tendo 31489  df-edring 31491  df-dveca 31737  df-disoa 31764  df-dvech 31814  df-dib 31874  df-dic 31908  df-dih 31964  df-doch 32083  df-djh 32130  df-lcdual 32322  df-mapd 32360
  Copyright terms: Public domain W3C validator