Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh8e Unicode version

Theorem mapdh8e 31951
Description: Part of Part (8) in [Baer] p. 48. Eliminate  w. (Contributed by NM, 10-May-2015.)
Hypotheses
Ref Expression
mapdh8a.h  |-  H  =  ( LHyp `  K
)
mapdh8a.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdh8a.v  |-  V  =  ( Base `  U
)
mapdh8a.s  |-  .-  =  ( -g `  U )
mapdh8a.o  |-  .0.  =  ( 0g `  U )
mapdh8a.n  |-  N  =  ( LSpan `  U )
mapdh8a.c  |-  C  =  ( (LCDual `  K
) `  W )
mapdh8a.d  |-  D  =  ( Base `  C
)
mapdh8a.r  |-  R  =  ( -g `  C
)
mapdh8a.q  |-  Q  =  ( 0g `  C
)
mapdh8a.j  |-  J  =  ( LSpan `  C )
mapdh8a.m  |-  M  =  ( (mapd `  K
) `  W )
mapdh8a.i  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
mapdh8a.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdh8e.f  |-  ( ph  ->  F  e.  D )
mapdh8e.mn  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
mapdh8e.eg  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
mapdh8e.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
mapdh8e.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
mapdh8e.t  |-  ( ph  ->  T  e.  ( V 
\  {  .0.  }
) )
mapdh8e.xy  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
mapdh8e.xt  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { T } ) )
mapdh8e.yt  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { T } ) )
mapdh8e.e  |-  ( ph  ->  X  e.  ( N `
 { Y ,  T } ) )
Assertion
Ref Expression
mapdh8e  |-  ( ph  ->  ( I `  <. Y ,  G ,  T >. )  =  ( I `
 <. X ,  F ,  T >. ) )
Distinct variable groups:    x, h,  .-    .0. , h, x    C, h    D, h, x    h, F, x    h, I    h, G, x    h, J, x   
h, M, x    h, N, x    ph, h    R, h, x    x, Q    T, h, x    U, h    h, X, x    h, Y, x   
x, I    h, V
Allowed substitution hints:    ph( x)    C( x)    Q( h)    U( x)    H( x, h)    K( x, h)    V( x)    W( x, h)

Proof of Theorem mapdh8e
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 mapdh8a.h . . 3  |-  H  =  ( LHyp `  K
)
2 mapdh8a.u . . 3  |-  U  =  ( ( DVecH `  K
) `  W )
3 mapdh8a.v . . 3  |-  V  =  ( Base `  U
)
4 mapdh8a.n . . 3  |-  N  =  ( LSpan `  U )
5 mapdh8a.k . . 3  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
6 mapdh8e.x . . . 4  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
76eldifad 3269 . . 3  |-  ( ph  ->  X  e.  V )
8 mapdh8e.y . . . 4  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
98eldifad 3269 . . 3  |-  ( ph  ->  Y  e.  V )
101, 2, 3, 4, 5, 7, 9dvh3dim 31613 . 2  |-  ( ph  ->  E. w  e.  V  -.  w  e.  ( N `  { X ,  Y } ) )
11 mapdh8a.s . . . 4  |-  .-  =  ( -g `  U )
12 mapdh8a.o . . . 4  |-  .0.  =  ( 0g `  U )
13 mapdh8a.c . . . 4  |-  C  =  ( (LCDual `  K
) `  W )
14 mapdh8a.d . . . 4  |-  D  =  ( Base `  C
)
15 mapdh8a.r . . . 4  |-  R  =  ( -g `  C
)
16 mapdh8a.q . . . 4  |-  Q  =  ( 0g `  C
)
17 mapdh8a.j . . . 4  |-  J  =  ( LSpan `  C )
18 mapdh8a.m . . . 4  |-  M  =  ( (mapd `  K
) `  W )
19 mapdh8a.i . . . 4  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
2053ad2ant1 978 . . . 4  |-  ( (
ph  /\  w  e.  V  /\  -.  w  e.  ( N `  { X ,  Y }
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
21 mapdh8e.f . . . . 5  |-  ( ph  ->  F  e.  D )
22213ad2ant1 978 . . . 4  |-  ( (
ph  /\  w  e.  V  /\  -.  w  e.  ( N `  { X ,  Y }
) )  ->  F  e.  D )
23 mapdh8e.mn . . . . 5  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
24233ad2ant1 978 . . . 4  |-  ( (
ph  /\  w  e.  V  /\  -.  w  e.  ( N `  { X ,  Y }
) )  ->  ( M `  ( N `  { X } ) )  =  ( J `
 { F }
) )
25 mapdh8e.eg . . . . 5  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
26253ad2ant1 978 . . . 4  |-  ( (
ph  /\  w  e.  V  /\  -.  w  e.  ( N `  { X ,  Y }
) )  ->  (
I `  <. X ,  F ,  Y >. )  =  G )
2763ad2ant1 978 . . . 4  |-  ( (
ph  /\  w  e.  V  /\  -.  w  e.  ( N `  { X ,  Y }
) )  ->  X  e.  ( V  \  {  .0.  } ) )
2883ad2ant1 978 . . . 4  |-  ( (
ph  /\  w  e.  V  /\  -.  w  e.  ( N `  { X ,  Y }
) )  ->  Y  e.  ( V  \  {  .0.  } ) )
29 mapdh8e.t . . . . 5  |-  ( ph  ->  T  e.  ( V 
\  {  .0.  }
) )
30293ad2ant1 978 . . . 4  |-  ( (
ph  /\  w  e.  V  /\  -.  w  e.  ( N `  { X ,  Y }
) )  ->  T  e.  ( V  \  {  .0.  } ) )
31 mapdh8e.yt . . . . 5  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { T } ) )
32313ad2ant1 978 . . . 4  |-  ( (
ph  /\  w  e.  V  /\  -.  w  e.  ( N `  { X ,  Y }
) )  ->  ( N `  { Y } )  =/=  ( N `  { T } ) )
33 eqid 2381 . . . . 5  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
341, 2, 5dvhlmod 31277 . . . . . 6  |-  ( ph  ->  U  e.  LMod )
35343ad2ant1 978 . . . . 5  |-  ( (
ph  /\  w  e.  V  /\  -.  w  e.  ( N `  { X ,  Y }
) )  ->  U  e.  LMod )
363, 33, 4, 34, 7, 9lspprcl 15975 . . . . . 6  |-  ( ph  ->  ( N `  { X ,  Y }
)  e.  ( LSubSp `  U ) )
37363ad2ant1 978 . . . . 5  |-  ( (
ph  /\  w  e.  V  /\  -.  w  e.  ( N `  { X ,  Y }
) )  ->  ( N `  { X ,  Y } )  e.  ( LSubSp `  U )
)
38 simp2 958 . . . . 5  |-  ( (
ph  /\  w  e.  V  /\  -.  w  e.  ( N `  { X ,  Y }
) )  ->  w  e.  V )
39 simp3 959 . . . . 5  |-  ( (
ph  /\  w  e.  V  /\  -.  w  e.  ( N `  { X ,  Y }
) )  ->  -.  w  e.  ( N `  { X ,  Y } ) )
403, 12, 33, 35, 37, 38, 39lssneln0 15949 . . . 4  |-  ( (
ph  /\  w  e.  V  /\  -.  w  e.  ( N `  { X ,  Y }
) )  ->  w  e.  ( V  \  {  .0.  } ) )
411, 2, 5dvhlvec 31276 . . . . . . . . 9  |-  ( ph  ->  U  e.  LVec )
4229eldifad 3269 . . . . . . . . 9  |-  ( ph  ->  T  e.  V )
43 mapdh8e.xy . . . . . . . . 9  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
44 mapdh8e.e . . . . . . . . . 10  |-  ( ph  ->  X  e.  ( N `
 { Y ,  T } ) )
45 prcom 3819 . . . . . . . . . . 11  |-  { Y ,  T }  =  { T ,  Y }
4645fveq2i 5665 . . . . . . . . . 10  |-  ( N `
 { Y ,  T } )  =  ( N `  { T ,  Y } )
4744, 46syl6eleq 2471 . . . . . . . . 9  |-  ( ph  ->  X  e.  ( N `
 { T ,  Y } ) )
483, 12, 4, 41, 6, 42, 9, 43, 47lspexch 16122 . . . . . . . 8  |-  ( ph  ->  T  e.  ( N `
 { X ,  Y } ) )
4933, 4, 34, 36, 48lspsnel5a 15993 . . . . . . 7  |-  ( ph  ->  ( N `  { T } )  C_  ( N `  { X ,  Y } ) )
50493ad2ant1 978 . . . . . 6  |-  ( (
ph  /\  w  e.  V  /\  -.  w  e.  ( N `  { X ,  Y }
) )  ->  ( N `  { T } )  C_  ( N `  { X ,  Y } ) )
5134adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  V )  ->  U  e.  LMod )
5236adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  V )  ->  ( N `  { X ,  Y } )  e.  ( LSubSp `  U )
)
53 simpr 448 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  V )  ->  w  e.  V )
543, 33, 4, 51, 52, 53lspsnel5 15992 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  V )  ->  (
w  e.  ( N `
 { X ,  Y } )  <->  ( N `  { w } ) 
C_  ( N `  { X ,  Y }
) ) )
5554biimprd 215 . . . . . . . 8  |-  ( (
ph  /\  w  e.  V )  ->  (
( N `  {
w } )  C_  ( N `  { X ,  Y } )  ->  w  e.  ( N `  { X ,  Y } ) ) )
5655con3d 127 . . . . . . 7  |-  ( (
ph  /\  w  e.  V )  ->  ( -.  w  e.  ( N `  { X ,  Y } )  ->  -.  ( N `  {
w } )  C_  ( N `  { X ,  Y } ) ) )
57563impia 1150 . . . . . 6  |-  ( (
ph  /\  w  e.  V  /\  -.  w  e.  ( N `  { X ,  Y }
) )  ->  -.  ( N `  { w } )  C_  ( N `  { X ,  Y } ) )
58 nssne2 3342 . . . . . 6  |-  ( ( ( N `  { T } )  C_  ( N `  { X ,  Y } )  /\  -.  ( N `  {
w } )  C_  ( N `  { X ,  Y } ) )  ->  ( N `  { T } )  =/=  ( N `  {
w } ) )
5950, 57, 58syl2anc 643 . . . . 5  |-  ( (
ph  /\  w  e.  V  /\  -.  w  e.  ( N `  { X ,  Y }
) )  ->  ( N `  { T } )  =/=  ( N `  { w } ) )
6059necomd 2627 . . . 4  |-  ( (
ph  /\  w  e.  V  /\  -.  w  e.  ( N `  { X ,  Y }
) )  ->  ( N `  { w } )  =/=  ( N `  { T } ) )
61 mapdh8e.xt . . . . 5  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { T } ) )
62613ad2ant1 978 . . . 4  |-  ( (
ph  /\  w  e.  V  /\  -.  w  e.  ( N `  { X ,  Y }
) )  ->  ( N `  { X } )  =/=  ( N `  { T } ) )
63413ad2ant1 978 . . . . . . 7  |-  ( (
ph  /\  w  e.  V  /\  -.  w  e.  ( N `  { X ,  Y }
) )  ->  U  e.  LVec )
6473ad2ant1 978 . . . . . . 7  |-  ( (
ph  /\  w  e.  V  /\  -.  w  e.  ( N `  { X ,  Y }
) )  ->  X  e.  V )
6593ad2ant1 978 . . . . . . 7  |-  ( (
ph  /\  w  e.  V  /\  -.  w  e.  ( N `  { X ,  Y }
) )  ->  Y  e.  V )
663, 4, 63, 38, 64, 65, 39lspindpi 16125 . . . . . 6  |-  ( (
ph  /\  w  e.  V  /\  -.  w  e.  ( N `  { X ,  Y }
) )  ->  (
( N `  {
w } )  =/=  ( N `  { X } )  /\  ( N `  { w } )  =/=  ( N `  { Y } ) ) )
6766simprd 450 . . . . 5  |-  ( (
ph  /\  w  e.  V  /\  -.  w  e.  ( N `  { X ,  Y }
) )  ->  ( N `  { w } )  =/=  ( N `  { Y } ) )
6867necomd 2627 . . . 4  |-  ( (
ph  /\  w  e.  V  /\  -.  w  e.  ( N `  { X ,  Y }
) )  ->  ( N `  { Y } )  =/=  ( N `  { w } ) )
69433ad2ant1 978 . . . . . 6  |-  ( (
ph  /\  w  e.  V  /\  -.  w  e.  ( N `  { X ,  Y }
) )  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
703, 12, 4, 63, 27, 65, 38, 69, 39lspindp2l 16127 . . . . 5  |-  ( (
ph  /\  w  e.  V  /\  -.  w  e.  ( N `  { X ,  Y }
) )  ->  (
( N `  { Y } )  =/=  ( N `  { w } )  /\  -.  X  e.  ( N `  { Y ,  w } ) ) )
7170simprd 450 . . . 4  |-  ( (
ph  /\  w  e.  V  /\  -.  w  e.  ( N `  { X ,  Y }
) )  ->  -.  X  e.  ( N `  { Y ,  w } ) )
721, 2, 3, 11, 12, 4, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 27, 28, 30, 32, 40, 60, 62, 68, 71mapdh8d 31950 . . 3  |-  ( (
ph  /\  w  e.  V  /\  -.  w  e.  ( N `  { X ,  Y }
) )  ->  (
I `  <. Y ,  G ,  T >. )  =  ( I `  <. X ,  F ,  T >. ) )
7372rexlimdv3a 2769 . 2  |-  ( ph  ->  ( E. w  e.  V  -.  w  e.  ( N `  { X ,  Y }
)  ->  ( I `  <. Y ,  G ,  T >. )  =  ( I `  <. X ,  F ,  T >. ) ) )
7410, 73mpd 15 1  |-  ( ph  ->  ( I `  <. Y ,  G ,  T >. )  =  ( I `
 <. X ,  F ,  T >. ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2544   E.wrex 2644   _Vcvv 2893    \ cdif 3254    C_ wss 3257   ifcif 3676   {csn 3751   {cpr 3752   <.cotp 3755    e. cmpt 4201   ` cfv 5388  (class class class)co 6014   1stc1st 6280   2ndc2nd 6281   iota_crio 6472   Basecbs 13390   0gc0g 13644   -gcsg 14609   LModclmod 15871   LSubSpclss 15929   LSpanclspn 15968   LVecclvec 16095   HLchlt 29517   LHypclh 30150   DVecHcdvh 31245  LCDualclcd 31753  mapdcmpd 31791
This theorem is referenced by:  mapdh8g  31953
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2362  ax-rep 4255  ax-sep 4265  ax-nul 4273  ax-pow 4312  ax-pr 4338  ax-un 4635  ax-cnex 8973  ax-resscn 8974  ax-1cn 8975  ax-icn 8976  ax-addcl 8977  ax-addrcl 8978  ax-mulcl 8979  ax-mulrcl 8980  ax-mulcom 8981  ax-addass 8982  ax-mulass 8983  ax-distr 8984  ax-i2m1 8985  ax-1ne0 8986  ax-1rid 8987  ax-rnegex 8988  ax-rrecex 8989  ax-cnre 8990  ax-pre-lttri 8991  ax-pre-lttrn 8992  ax-pre-ltadd 8993  ax-pre-mulgt0 8994
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-fal 1326  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2236  df-mo 2237  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2506  df-ne 2546  df-nel 2547  df-ral 2648  df-rex 2649  df-reu 2650  df-rmo 2651  df-rab 2652  df-v 2895  df-sbc 3099  df-csb 3189  df-dif 3260  df-un 3262  df-in 3264  df-ss 3271  df-pss 3273  df-nul 3566  df-if 3677  df-pw 3738  df-sn 3757  df-pr 3758  df-tp 3759  df-op 3760  df-ot 3761  df-uni 3952  df-int 3987  df-iun 4031  df-iin 4032  df-br 4148  df-opab 4202  df-mpt 4203  df-tr 4238  df-eprel 4429  df-id 4433  df-po 4438  df-so 4439  df-fr 4476  df-we 4478  df-ord 4519  df-on 4520  df-lim 4521  df-suc 4522  df-om 4780  df-xp 4818  df-rel 4819  df-cnv 4820  df-co 4821  df-dm 4822  df-rn 4823  df-res 4824  df-ima 4825  df-iota 5352  df-fun 5390  df-fn 5391  df-f 5392  df-f1 5393  df-fo 5394  df-f1o 5395  df-fv 5396  df-ov 6017  df-oprab 6018  df-mpt2 6019  df-of 6238  df-1st 6282  df-2nd 6283  df-tpos 6409  df-undef 6473  df-riota 6479  df-recs 6563  df-rdg 6598  df-1o 6654  df-oadd 6658  df-er 6835  df-map 6950  df-en 7040  df-dom 7041  df-sdom 7042  df-fin 7043  df-pnf 9049  df-mnf 9050  df-xr 9051  df-ltxr 9052  df-le 9053  df-sub 9219  df-neg 9220  df-nn 9927  df-2 9984  df-3 9985  df-4 9986  df-5 9987  df-6 9988  df-n0 10148  df-z 10209  df-uz 10415  df-fz 10970  df-struct 13392  df-ndx 13393  df-slot 13394  df-base 13395  df-sets 13396  df-ress 13397  df-plusg 13463  df-mulr 13464  df-sca 13466  df-vsca 13467  df-0g 13648  df-mre 13732  df-mrc 13733  df-acs 13735  df-poset 14324  df-plt 14336  df-lub 14352  df-glb 14353  df-join 14354  df-meet 14355  df-p0 14389  df-p1 14390  df-lat 14396  df-clat 14458  df-mnd 14611  df-submnd 14660  df-grp 14733  df-minusg 14734  df-sbg 14735  df-subg 14862  df-cntz 15037  df-oppg 15063  df-lsm 15191  df-cmn 15335  df-abl 15336  df-mgp 15570  df-rng 15584  df-ur 15586  df-oppr 15649  df-dvdsr 15667  df-unit 15668  df-invr 15698  df-dvr 15709  df-drng 15758  df-lmod 15873  df-lss 15930  df-lsp 15969  df-lvec 16096  df-lsatoms 29143  df-lshyp 29144  df-lcv 29186  df-lfl 29225  df-lkr 29253  df-ldual 29291  df-oposet 29343  df-ol 29345  df-oml 29346  df-covers 29433  df-ats 29434  df-atl 29465  df-cvlat 29489  df-hlat 29518  df-llines 29664  df-lplanes 29665  df-lvols 29666  df-lines 29667  df-psubsp 29669  df-pmap 29670  df-padd 29962  df-lhyp 30154  df-laut 30155  df-ldil 30270  df-ltrn 30271  df-trl 30325  df-tgrp 30909  df-tendo 30921  df-edring 30923  df-dveca 31169  df-disoa 31196  df-dvech 31246  df-dib 31306  df-dic 31340  df-dih 31396  df-doch 31515  df-djh 31562  df-lcdual 31754  df-mapd 31792
  Copyright terms: Public domain W3C validator