Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdhval2 Structured version   Unicode version

Theorem mapdhval2 32598
Description: Lemmma for ~? mapdh . (Contributed by NM, 3-Apr-2015.)
Hypotheses
Ref Expression
mapdh.q  |-  Q  =  ( 0g `  C
)
mapdh.i  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
mapdh2.x  |-  ( ph  ->  X  e.  A )
mapdh2.f  |-  ( ph  ->  F  e.  B )
mapdh2.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
Assertion
Ref Expression
mapdhval2  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  ( iota_ h  e.  D ( ( M `  ( N `
 { Y }
) )  =  ( J `  { h } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `
 { ( F R h ) } ) ) ) )
Distinct variable groups:    x, D    x, h, F    x, J    x, M    x, N    x,  .0.    x, Q    x, R    x, 
.-    h, X, x    h, Y, x    ph, h    .0. , h
Allowed substitution hints:    ph( x)    A( x, h)    B( x, h)    C( x, h)    D( h)    Q( h)    R( h)    I( x, h)    J( h)    M( h)    .- ( h)    N( h)    V( x, h)

Proof of Theorem mapdhval2
StepHypRef Expression
1 mapdh.q . . 3  |-  Q  =  ( 0g `  C
)
2 mapdh.i . . 3  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
3 mapdh2.x . . 3  |-  ( ph  ->  X  e.  A )
4 mapdh2.f . . 3  |-  ( ph  ->  F  e.  B )
5 mapdh2.y . . 3  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
61, 2, 3, 4, 5mapdhval 32596 . 2  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  if ( Y  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `
 { Y }
) )  =  ( J `  { h } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `
 { ( F R h ) } ) ) ) ) )
7 eldifsni 3930 . . . 4  |-  ( Y  e.  ( V  \  {  .0.  } )  ->  Y  =/=  .0.  )
87neneqd 2619 . . 3  |-  ( Y  e.  ( V  \  {  .0.  } )  ->  -.  Y  =  .0.  )
9 iffalse 3748 . . 3  |-  ( -.  Y  =  .0.  ->  if ( Y  =  .0. 
,  Q ,  (
iota_ h  e.  D
( ( M `  ( N `  { Y } ) )  =  ( J `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( F R h ) } ) ) ) )  =  ( iota_ h  e.  D ( ( M `  ( N `
 { Y }
) )  =  ( J `  { h } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `
 { ( F R h ) } ) ) ) )
105, 8, 93syl 19 . 2  |-  ( ph  ->  if ( Y  =  .0.  ,  Q , 
( iota_ h  e.  D
( ( M `  ( N `  { Y } ) )  =  ( J `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( F R h ) } ) ) ) )  =  ( iota_ h  e.  D ( ( M `  ( N `
 { Y }
) )  =  ( J `  { h } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `
 { ( F R h ) } ) ) ) )
116, 10eqtrd 2470 1  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  ( iota_ h  e.  D ( ( M `  ( N `
 { Y }
) )  =  ( J `  { h } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `
 { ( F R h ) } ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   _Vcvv 2958    \ cdif 3319   ifcif 3741   {csn 3816   <.cotp 3820    e. cmpt 4269   ` cfv 5457  (class class class)co 6084   1stc1st 6350   2ndc2nd 6351   iota_crio 6545   0gc0g 13728
This theorem is referenced by:  mapdhcl  32599  mapdheq  32600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-ot 3826  df-uni 4018  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-iota 5421  df-fun 5459  df-fv 5465  df-ov 6087  df-1st 6352  df-2nd 6353  df-riota 6552
  Copyright terms: Public domain W3C validator