Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdhval2 Unicode version

Theorem mapdhval2 31975
Description: Lemmma for ~? mapdh . (Contributed by NM, 3-Apr-2015.)
Hypotheses
Ref Expression
mapdh.q  |-  Q  =  ( 0g `  C
)
mapdh.i  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
mapdh2.x  |-  ( ph  ->  X  e.  A )
mapdh2.f  |-  ( ph  ->  F  e.  B )
mapdh2.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
Assertion
Ref Expression
mapdhval2  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  ( iota_ h  e.  D ( ( M `  ( N `
 { Y }
) )  =  ( J `  { h } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `
 { ( F R h ) } ) ) ) )
Distinct variable groups:    x, D    x, h, F    x, J    x, M    x, N    x,  .0.    x, Q    x, R    x, 
.-    h, X, x    h, Y, x    ph, h    .0. , h
Allowed substitution hints:    ph( x)    A( x, h)    B( x, h)    C( x, h)    D( h)    Q( h)    R( h)    I( x, h)    J( h)    M( h)    .- ( h)    N( h)    V( x, h)

Proof of Theorem mapdhval2
StepHypRef Expression
1 mapdh.q . . 3  |-  Q  =  ( 0g `  C
)
2 mapdh.i . . 3  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
3 mapdh2.x . . 3  |-  ( ph  ->  X  e.  A )
4 mapdh2.f . . 3  |-  ( ph  ->  F  e.  B )
5 mapdh2.y . . 3  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
61, 2, 3, 4, 5mapdhval 31973 . 2  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  if ( Y  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `
 { Y }
) )  =  ( J `  { h } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `
 { ( F R h ) } ) ) ) ) )
7 eldifsni 3843 . . . 4  |-  ( Y  e.  ( V  \  {  .0.  } )  ->  Y  =/=  .0.  )
87neneqd 2545 . . 3  |-  ( Y  e.  ( V  \  {  .0.  } )  ->  -.  Y  =  .0.  )
9 iffalse 3661 . . 3  |-  ( -.  Y  =  .0.  ->  if ( Y  =  .0. 
,  Q ,  (
iota_ h  e.  D
( ( M `  ( N `  { Y } ) )  =  ( J `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( F R h ) } ) ) ) )  =  ( iota_ h  e.  D ( ( M `  ( N `
 { Y }
) )  =  ( J `  { h } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `
 { ( F R h ) } ) ) ) )
105, 8, 93syl 18 . 2  |-  ( ph  ->  if ( Y  =  .0.  ,  Q , 
( iota_ h  e.  D
( ( M `  ( N `  { Y } ) )  =  ( J `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( F R h ) } ) ) ) )  =  ( iota_ h  e.  D ( ( M `  ( N `
 { Y }
) )  =  ( J `  { h } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `
 { ( F R h ) } ) ) ) )
116, 10eqtrd 2398 1  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  ( iota_ h  e.  D ( ( M `  ( N `
 { Y }
) )  =  ( J `  { h } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `
 { ( F R h ) } ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1647    e. wcel 1715   _Vcvv 2873    \ cdif 3235   ifcif 3654   {csn 3729   <.cotp 3733    e. cmpt 4179   ` cfv 5358  (class class class)co 5981   1stc1st 6247   2ndc2nd 6248   iota_crio 6439   0gc0g 13610
This theorem is referenced by:  mapdhcl  31976  mapdheq  31977
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-reu 2635  df-rab 2637  df-v 2875  df-sbc 3078  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-sn 3735  df-pr 3736  df-op 3738  df-ot 3739  df-uni 3930  df-br 4126  df-opab 4180  df-mpt 4181  df-id 4412  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-iota 5322  df-fun 5360  df-fv 5366  df-ov 5984  df-1st 6249  df-2nd 6250  df-riota 6446
  Copyright terms: Public domain W3C validator