Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem26 Unicode version

Theorem mapdpglem26 31813
Description: Lemma for mapdpg 31821. Baer p. 45 line 14: "Consequently there exist numbers u,v in G neither of which is 0 such that y = uy'' and..." (We scope $d  u ph locally to avoid clashes with later substitutions into 
ph.) (Contributed by NM, 22-Mar-2015.)
Hypotheses
Ref Expression
mapdpg.h  |-  H  =  ( LHyp `  K
)
mapdpg.m  |-  M  =  ( (mapd `  K
) `  W )
mapdpg.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdpg.v  |-  V  =  ( Base `  U
)
mapdpg.s  |-  .-  =  ( -g `  U )
mapdpg.z  |-  .0.  =  ( 0g `  U )
mapdpg.n  |-  N  =  ( LSpan `  U )
mapdpg.c  |-  C  =  ( (LCDual `  K
) `  W )
mapdpg.f  |-  F  =  ( Base `  C
)
mapdpg.r  |-  R  =  ( -g `  C
)
mapdpg.j  |-  J  =  ( LSpan `  C )
mapdpg.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdpg.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
mapdpg.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
mapdpg.g  |-  ( ph  ->  G  e.  F )
mapdpg.ne  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
mapdpg.e  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )
mapdpgem25.h1  |-  ( ph  ->  ( h  e.  F  /\  ( ( M `  ( N `  { Y } ) )  =  ( J `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R h ) } ) ) ) )
mapdpgem25.i1  |-  ( ph  ->  ( i  e.  F  /\  ( ( M `  ( N `  { Y } ) )  =  ( J `  {
i } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R i ) } ) ) ) )
mapdpglem26.a  |-  A  =  (Scalar `  U )
mapdpglem26.b  |-  B  =  ( Base `  A
)
mapdpglem26.t  |-  .x.  =  ( .s `  C )
mapdpglem26.o  |-  O  =  ( 0g `  A
)
Assertion
Ref Expression
mapdpglem26  |-  ( ph  ->  E. u  e.  ( B  \  { O } ) h  =  ( u  .x.  i
) )
Distinct variable groups:    h, i, u    u, B    u, C    u, O    u,  .x.    ph, u
Allowed substitution hints:    ph( h, i)    A( u, h, i)    B( h, i)    C( h, i)    R( u, h, i)    .x. ( h, i)    U( u, h, i)    F( u, h, i)    G( u, h, i)    H( u, h, i)    J( u, h, i)    K( u, h, i)    M( u, h, i)    .- ( u, h, i)    N( u, h, i)    O( h, i)    V( u, h, i)    W( u, h, i)    X( u, h, i)    Y( u, h, i)    .0. ( u, h, i)

Proof of Theorem mapdpglem26
StepHypRef Expression
1 mapdpg.h . . . 4  |-  H  =  ( LHyp `  K
)
2 mapdpg.m . . . 4  |-  M  =  ( (mapd `  K
) `  W )
3 mapdpg.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
4 mapdpg.v . . . 4  |-  V  =  ( Base `  U
)
5 mapdpg.s . . . 4  |-  .-  =  ( -g `  U )
6 mapdpg.z . . . 4  |-  .0.  =  ( 0g `  U )
7 mapdpg.n . . . 4  |-  N  =  ( LSpan `  U )
8 mapdpg.c . . . 4  |-  C  =  ( (LCDual `  K
) `  W )
9 mapdpg.f . . . 4  |-  F  =  ( Base `  C
)
10 mapdpg.r . . . 4  |-  R  =  ( -g `  C
)
11 mapdpg.j . . . 4  |-  J  =  ( LSpan `  C )
12 mapdpg.k . . . 4  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
13 mapdpg.x . . . 4  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
14 mapdpg.y . . . 4  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
15 mapdpg.g . . . 4  |-  ( ph  ->  G  e.  F )
16 mapdpg.ne . . . 4  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
17 mapdpg.e . . . 4  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )
18 mapdpgem25.h1 . . . 4  |-  ( ph  ->  ( h  e.  F  /\  ( ( M `  ( N `  { Y } ) )  =  ( J `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R h ) } ) ) ) )
19 mapdpgem25.i1 . . . 4  |-  ( ph  ->  ( i  e.  F  /\  ( ( M `  ( N `  { Y } ) )  =  ( J `  {
i } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R i ) } ) ) ) )
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19mapdpglem25 31812 . . 3  |-  ( ph  ->  ( ( J `  { h } )  =  ( J `  { i } )  /\  ( J `  { ( G R h ) } )  =  ( J `  { ( G R i ) } ) ) )
2120simpld 446 . 2  |-  ( ph  ->  ( J `  {
h } )  =  ( J `  {
i } ) )
22 eqid 2387 . . . 4  |-  (Scalar `  C )  =  (Scalar `  C )
23 eqid 2387 . . . 4  |-  ( Base `  (Scalar `  C )
)  =  ( Base `  (Scalar `  C )
)
24 eqid 2387 . . . 4  |-  ( 0g
`  (Scalar `  C )
)  =  ( 0g
`  (Scalar `  C )
)
25 mapdpglem26.t . . . 4  |-  .x.  =  ( .s `  C )
261, 8, 12lcdlvec 31706 . . . 4  |-  ( ph  ->  C  e.  LVec )
2718simpld 446 . . . 4  |-  ( ph  ->  h  e.  F )
2819simpld 446 . . . 4  |-  ( ph  ->  i  e.  F )
299, 22, 23, 24, 25, 11, 26, 27, 28lspsneq 16121 . . 3  |-  ( ph  ->  ( ( J `  { h } )  =  ( J `  { i } )  <->  E. u  e.  (
( Base `  (Scalar `  C
) )  \  {
( 0g `  (Scalar `  C ) ) } ) h  =  ( u  .x.  i ) ) )
30 mapdpglem26.a . . . . . 6  |-  A  =  (Scalar `  U )
31 mapdpglem26.b . . . . . 6  |-  B  =  ( Base `  A
)
321, 3, 30, 31, 8, 22, 23, 12lcdsbase 31715 . . . . 5  |-  ( ph  ->  ( Base `  (Scalar `  C ) )  =  B )
33 mapdpglem26.o . . . . . . 7  |-  O  =  ( 0g `  A
)
341, 3, 30, 33, 8, 22, 24, 12lcd0 31723 . . . . . 6  |-  ( ph  ->  ( 0g `  (Scalar `  C ) )  =  O )
3534sneqd 3770 . . . . 5  |-  ( ph  ->  { ( 0g `  (Scalar `  C ) ) }  =  { O } )
3632, 35difeq12d 3409 . . . 4  |-  ( ph  ->  ( ( Base `  (Scalar `  C ) )  \  { ( 0g `  (Scalar `  C ) ) } )  =  ( B  \  { O } ) )
3736rexeqdv 2854 . . 3  |-  ( ph  ->  ( E. u  e.  ( ( Base `  (Scalar `  C ) )  \  { ( 0g `  (Scalar `  C ) ) } ) h  =  ( u  .x.  i
)  <->  E. u  e.  ( B  \  { O } ) h  =  ( u  .x.  i
) ) )
3829, 37bitrd 245 . 2  |-  ( ph  ->  ( ( J `  { h } )  =  ( J `  { i } )  <->  E. u  e.  ( B  \  { O }
) h  =  ( u  .x.  i ) ) )
3921, 38mpbid 202 1  |-  ( ph  ->  E. u  e.  ( B  \  { O } ) h  =  ( u  .x.  i
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2550   E.wrex 2650    \ cdif 3260   {csn 3757   ` cfv 5394  (class class class)co 6020   Basecbs 13396  Scalarcsca 13459   .scvsca 13460   0gc0g 13650   -gcsg 14615   LSpanclspn 15974   HLchlt 29465   LHypclh 30098   DVecHcdvh 31193  LCDualclcd 31701  mapdcmpd 31739
This theorem is referenced by:  mapdpglem32  31820
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-fal 1326  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-1st 6288  df-2nd 6289  df-tpos 6415  df-undef 6479  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-map 6956  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-n0 10154  df-z 10215  df-uz 10421  df-fz 10976  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-mulr 13470  df-sca 13472  df-vsca 13473  df-0g 13654  df-mre 13738  df-mrc 13739  df-acs 13741  df-poset 14330  df-plt 14342  df-lub 14358  df-glb 14359  df-join 14360  df-meet 14361  df-p0 14395  df-p1 14396  df-lat 14402  df-clat 14464  df-mnd 14617  df-submnd 14666  df-grp 14739  df-minusg 14740  df-sbg 14741  df-subg 14868  df-cntz 15043  df-oppg 15069  df-lsm 15197  df-cmn 15341  df-abl 15342  df-mgp 15576  df-rng 15590  df-ur 15592  df-oppr 15655  df-dvdsr 15673  df-unit 15674  df-invr 15704  df-dvr 15715  df-drng 15764  df-lmod 15879  df-lss 15936  df-lsp 15975  df-lvec 16102  df-lsatoms 29091  df-lshyp 29092  df-lcv 29134  df-lfl 29173  df-lkr 29201  df-ldual 29239  df-oposet 29291  df-ol 29293  df-oml 29294  df-covers 29381  df-ats 29382  df-atl 29413  df-cvlat 29437  df-hlat 29466  df-llines 29612  df-lplanes 29613  df-lvols 29614  df-lines 29615  df-psubsp 29617  df-pmap 29618  df-padd 29910  df-lhyp 30102  df-laut 30103  df-ldil 30218  df-ltrn 30219  df-trl 30273  df-tgrp 30857  df-tendo 30869  df-edring 30871  df-dveca 31117  df-disoa 31144  df-dvech 31194  df-dib 31254  df-dic 31288  df-dih 31344  df-doch 31463  df-djh 31510  df-lcdual 31702
  Copyright terms: Public domain W3C validator