Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdrvallem2 Structured version   Unicode version

Theorem mapdrvallem2 32370
Description: Lemma for ~? mapdrval . TODO: very long antecendents are dragged through proof in some places - see if it shortens proof to remove unused conjuncts. (Contributed by NM, 2-Feb-2015.)
Hypotheses
Ref Expression
mapdrval.h  |-  H  =  ( LHyp `  K
)
mapdrval.o  |-  O  =  ( ( ocH `  K
) `  W )
mapdrval.m  |-  M  =  ( (mapd `  K
) `  W )
mapdrval.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdrval.s  |-  S  =  ( LSubSp `  U )
mapdrval.f  |-  F  =  (LFnl `  U )
mapdrval.l  |-  L  =  (LKer `  U )
mapdrval.d  |-  D  =  (LDual `  U )
mapdrval.t  |-  T  =  ( LSubSp `  D )
mapdrval.c  |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `
 g ) ) )  =  ( L `
 g ) }
mapdrval.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdrval.r  |-  ( ph  ->  R  e.  T )
mapdrval.e  |-  ( ph  ->  R  C_  C )
mapdrval.q  |-  Q  = 
U_ h  e.  R  ( O `  ( L `
 h ) )
mapdrval.v  |-  V  =  ( Base `  U
)
mapdrvallem2.a  |-  A  =  (LSAtoms `  U )
mapdrvallem2.n  |-  N  =  ( LSpan `  U )
mapdrvallem2.z  |-  .0.  =  ( 0g `  U )
mapdrvallem2.y  |-  Y  =  ( 0g `  D
)
Assertion
Ref Expression
mapdrvallem2  |-  ( ph  ->  { f  e.  C  |  ( O `  ( L `  f ) )  C_  Q }  C_  R )
Distinct variable groups:    C, f    f, g, F    f, K    g, h, L    g, O, h    Q, f, h    R, f, h    U, g    f, W    ph, f    C, h   
h, N    Q, h    U, h    h, V    h, Y    .0. , h    ph, h
Allowed substitution hints:    ph( g)    A( f, g, h)    C( g)    D( f, g, h)    Q( g)    R( g)    S( f, g, h)    T( f,
g, h)    U( f)    F( h)    H( f, g, h)    K( g, h)    L( f)    M( f, g, h)    N( f, g)    O( f)    V( f, g)    W( g, h)    Y( f, g)    .0. ( f,
g)

Proof of Theorem mapdrvallem2
Dummy variables  r  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2495 . . 3  |-  ( f  =  Y  ->  (
f  e.  R  <->  Y  e.  R ) )
2 mapdrval.h . . . . 5  |-  H  =  ( LHyp `  K
)
3 mapdrval.o . . . . 5  |-  O  =  ( ( ocH `  K
) `  W )
4 mapdrval.u . . . . 5  |-  U  =  ( ( DVecH `  K
) `  W )
5 mapdrval.v . . . . 5  |-  V  =  ( Base `  U
)
6 mapdrvallem2.n . . . . 5  |-  N  =  ( LSpan `  U )
7 mapdrvallem2.z . . . . 5  |-  .0.  =  ( 0g `  U )
8 mapdrval.f . . . . 5  |-  F  =  (LFnl `  U )
9 mapdrval.l . . . . 5  |-  L  =  (LKer `  U )
10 mapdrval.d . . . . 5  |-  D  =  (LDual `  U )
11 mapdrvallem2.y . . . . 5  |-  Y  =  ( 0g `  D
)
12 mapdrval.c . . . . 5  |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `
 g ) ) )  =  ( L `
 g ) }
13 mapdrval.k . . . . . . 7  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
14133ad2ant1 978 . . . . . 6  |-  ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  ->  ( K  e.  HL  /\  W  e.  H ) )
1514adantr 452 . . . . 5  |-  ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y )  ->  ( K  e.  HL  /\  W  e.  H ) )
16 simpl2 961 . . . . . 6  |-  ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y )  ->  f  e.  C )
17 simpr 448 . . . . . 6  |-  ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y )  ->  f  =/=  Y )
18 eldifsn 3919 . . . . . 6  |-  ( f  e.  ( C  \  { Y } )  <->  ( f  e.  C  /\  f  =/=  Y ) )
1916, 17, 18sylanbrc 646 . . . . 5  |-  ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y )  ->  f  e.  ( C  \  { Y } ) )
202, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 19lcfl8b 32229 . . . 4  |-  ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y )  ->  E. x  e.  ( V  \  {  .0.  } ) ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )
21 simp1l3 1052 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  ( O `  ( L `  f ) )  C_  Q )
22 eqimss2 3393 . . . . . . . . . . . . 13  |-  ( ( O `  ( L `
 f ) )  =  ( N `  { x } )  ->  ( N `  { x } ) 
C_  ( O `  ( L `  f ) ) )
23223ad2ant3 980 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  ( N `  { x } )  C_  ( O `  ( L `  f ) ) )
24 mapdrval.s . . . . . . . . . . . . 13  |-  S  =  ( LSubSp `  U )
252, 4, 13dvhlmod 31835 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  U  e.  LMod )
26253ad2ant1 978 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  ->  U  e.  LMod )
2726adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y )  ->  U  e.  LMod )
28273ad2ant1 978 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  U  e.  LMod )
29153ad2ant1 978 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
3012lcfl1lem 32216 . . . . . . . . . . . . . . . . . . 19  |-  ( f  e.  C  <->  ( f  e.  F  /\  ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
) ) )
3130simplbi 447 . . . . . . . . . . . . . . . . . 18  |-  ( f  e.  C  ->  f  e.  F )
32313ad2ant2 979 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  ->  f  e.  F )
3332adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y )  ->  f  e.  F )
34333ad2ant1 978 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  f  e.  F )
355, 8, 9, 28, 34lkrssv 29821 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  ( L `  f )  C_  V )
362, 4, 5, 24, 3dochlss 32079 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( L `  f )  C_  V
)  ->  ( O `  ( L `  f
) )  e.  S
)
3729, 35, 36syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  ( O `  ( L `  f ) )  e.  S )
38 eldifi 3461 . . . . . . . . . . . . . 14  |-  ( x  e.  ( V  \  {  .0.  } )  ->  x  e.  V )
39383ad2ant2 979 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  x  e.  V )
405, 24, 6, 28, 37, 39lspsnel5 16063 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  (
x  e.  ( O `
 ( L `  f ) )  <->  ( N `  { x } ) 
C_  ( O `  ( L `  f ) ) ) )
4123, 40mpbird 224 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  x  e.  ( O `  ( L `  f )
) )
4221, 41sseldd 3341 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  x  e.  Q )
43 mapdrval.q . . . . . . . . . 10  |-  Q  = 
U_ h  e.  R  ( O `  ( L `
 h ) )
4442, 43syl6eleq 2525 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  x  e.  U_ h  e.  R  ( O `  ( L `
 h ) ) )
45 eliun 4089 . . . . . . . . 9  |-  ( x  e.  U_ h  e.  R  ( O `  ( L `  h ) )  <->  E. h  e.  R  x  e.  ( O `  ( L `  h
) ) )
4644, 45sylib 189 . . . . . . . 8  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  E. h  e.  R  x  e.  ( O `  ( L `
 h ) ) )
47 eqid 2435 . . . . . . . . . . 11  |-  (Scalar `  U )  =  (Scalar `  U )
48 eqid 2435 . . . . . . . . . . 11  |-  ( Base `  (Scalar `  U )
)  =  ( Base `  (Scalar `  U )
)
49 eqid 2435 . . . . . . . . . . 11  |-  ( .s
`  D )  =  ( .s `  D
)
502, 4, 13dvhlvec 31834 . . . . . . . . . . . . . . 15  |-  ( ph  ->  U  e.  LVec )
51503ad2ant1 978 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  ->  U  e.  LVec )
5251adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y )  ->  U  e.  LVec )
53523ad2ant1 978 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  U  e.  LVec )
5453ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  U  e.  LVec )
55 simpr 448 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  /\  h  e.  R )  ->  h  e.  R )
56 simp1l1 1050 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  ph )
5756adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  /\  h  e.  R )  ->  ph )
58 mapdrval.e . . . . . . . . . . . . . . . 16  |-  ( ph  ->  R  C_  C )
5957, 58syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  /\  h  e.  R )  ->  R  C_  C )
6059sseld 3339 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  /\  h  e.  R )  ->  (
h  e.  R  ->  h  e.  C )
)
6112lcfl1lem 32216 . . . . . . . . . . . . . . 15  |-  ( h  e.  C  <->  ( h  e.  F  /\  ( O `  ( O `  ( L `  h
) ) )  =  ( L `  h
) ) )
6261simplbi 447 . . . . . . . . . . . . . 14  |-  ( h  e.  C  ->  h  e.  F )
6360, 62syl6 31 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  /\  h  e.  R )  ->  (
h  e.  R  ->  h  e.  F )
)
6455, 63mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  /\  h  e.  R )  ->  h  e.  F )
6564adantr 452 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  h  e.  F )
6634ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  f  e.  F )
67 simpll3 998 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( O `  ( L `  f
) )  =  ( N `  { x } ) )
6828ad2antrr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  U  e.  LMod )
6929ad2antrr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
705, 8, 9, 68, 65lkrssv 29821 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( L `  h )  C_  V
)
712, 4, 5, 24, 3dochlss 32079 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( L `  h )  C_  V
)  ->  ( O `  ( L `  h
) )  e.  S
)
7269, 70, 71syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( O `  ( L `  h
) )  e.  S
)
73 simpr 448 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  x  e.  ( O `  ( L `
 h ) ) )
7424, 6, 68, 72, 73lspsnel5a 16064 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( N `  { x } ) 
C_  ( O `  ( L `  h ) ) )
75 mapdrvallem2.a . . . . . . . . . . . . . . 15  |-  A  =  (LSAtoms `  U )
76 simpll2 997 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  x  e.  ( V  \  {  .0.  } ) )
775, 6, 7, 75, 68, 76lsatlspsn 29718 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( N `  { x } )  e.  A )
782, 3, 4, 7, 75, 8, 9, 69, 65dochsat0 32182 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( ( O `  ( L `  h ) )  e.  A  \/  ( O `
 ( L `  h ) )  =  {  .0.  } ) )
797, 75, 54, 77, 78lsatcmp2 29729 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( ( N `  { x } )  C_  ( O `  ( L `  h ) )  <->  ( N `  { x } )  =  ( O `  ( L `  h ) ) ) )
8074, 79mpbid 202 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( N `  { x } )  =  ( O `  ( L `  h ) ) )
8167, 80eqtr2d 2468 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( O `  ( L `  h
) )  =  ( O `  ( L `
 f ) ) )
82 eqid 2435 . . . . . . . . . . . . 13  |-  ( (
DIsoH `  K ) `  W )  =  ( ( DIsoH `  K ) `  W )
8356, 58syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  R  C_  C )
8483sselda 3340 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  /\  h  e.  R )  ->  h  e.  C )
8584adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  h  e.  C )
862, 82, 3, 4, 8, 9, 12, 69, 65lcfl5 32221 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( h  e.  C  <->  ( L `  h )  e.  ran  ( ( DIsoH `  K
) `  W )
) )
8785, 86mpbid 202 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( L `  h )  e.  ran  ( ( DIsoH `  K
) `  W )
)
88 simp1l2 1051 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  f  e.  C )
8988ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  f  e.  C )
902, 82, 3, 4, 8, 9, 12, 69, 66lcfl5 32221 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( f  e.  C  <->  ( L `  f )  e.  ran  ( ( DIsoH `  K
) `  W )
) )
9189, 90mpbid 202 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( L `  f )  e.  ran  ( ( DIsoH `  K
) `  W )
)
922, 82, 3, 69, 87, 91doch11 32098 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( ( O `  ( L `  h ) )  =  ( O `  ( L `  f )
)  <->  ( L `  h )  =  ( L `  f ) ) )
9381, 92mpbid 202 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  ( L `  h )  =  ( L `  f ) )
9447, 48, 8, 9, 10, 49, 54, 65, 66, 93eqlkr4 29890 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y
)  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `
 ( L `  f ) )  =  ( N `  {
x } ) )  /\  h  e.  R
)  /\  x  e.  ( O `  ( L `
 h ) ) )  ->  E. r  e.  ( Base `  (Scalar `  U ) ) f  =  ( r ( .s `  D ) h ) )
9594ex 424 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  /\  h  e.  R )  ->  (
x  e.  ( O `
 ( L `  h ) )  ->  E. r  e.  ( Base `  (Scalar `  U
) ) f  =  ( r ( .s
`  D ) h ) ) )
9695reximdva 2810 . . . . . . . 8  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  ( E. h  e.  R  x  e.  ( O `  ( L `  h
) )  ->  E. h  e.  R  E. r  e.  ( Base `  (Scalar `  U ) ) f  =  ( r ( .s `  D ) h ) ) )
9746, 96mpd 15 . . . . . . 7  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  E. h  e.  R  E. r  e.  ( Base `  (Scalar `  U ) ) f  =  ( r ( .s `  D ) h ) )
98 eleq1 2495 . . . . . . . . . 10  |-  ( f  =  ( r ( .s `  D ) h )  ->  (
f  e.  R  <->  ( r
( .s `  D
) h )  e.  R ) )
9998reximi 2805 . . . . . . . . 9  |-  ( E. r  e.  ( Base `  (Scalar `  U )
) f  =  ( r ( .s `  D ) h )  ->  E. r  e.  (
Base `  (Scalar `  U
) ) ( f  e.  R  <->  ( r
( .s `  D
) h )  e.  R ) )
10099reximi 2805 . . . . . . . 8  |-  ( E. h  e.  R  E. r  e.  ( Base `  (Scalar `  U )
) f  =  ( r ( .s `  D ) h )  ->  E. h  e.  R  E. r  e.  ( Base `  (Scalar `  U
) ) ( f  e.  R  <->  ( r
( .s `  D
) h )  e.  R ) )
101 rexcom 2861 . . . . . . . . 9  |-  ( E. h  e.  R  E. r  e.  ( Base `  (Scalar `  U )
) ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R
)  <->  E. r  e.  (
Base `  (Scalar `  U
) ) E. h  e.  R  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R
) )
102 df-rex 2703 . . . . . . . . . 10  |-  ( E. h  e.  R  ( f  e.  R  <->  ( r
( .s `  D
) h )  e.  R )  <->  E. h
( h  e.  R  /\  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R ) ) )
103102rexbii 2722 . . . . . . . . 9  |-  ( E. r  e.  ( Base `  (Scalar `  U )
) E. h  e.  R  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R
)  <->  E. r  e.  (
Base `  (Scalar `  U
) ) E. h
( h  e.  R  /\  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R ) ) )
104101, 103bitri 241 . . . . . . . 8  |-  ( E. h  e.  R  E. r  e.  ( Base `  (Scalar `  U )
) ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R
)  <->  E. r  e.  (
Base `  (Scalar `  U
) ) E. h
( h  e.  R  /\  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R ) ) )
105100, 104sylib 189 . . . . . . 7  |-  ( E. h  e.  R  E. r  e.  ( Base `  (Scalar `  U )
) f  =  ( r ( .s `  D ) h )  ->  E. r  e.  (
Base `  (Scalar `  U
) ) E. h
( h  e.  R  /\  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R ) ) )
10697, 105syl 16 . . . . . 6  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  E. r  e.  ( Base `  (Scalar `  U ) ) E. h ( h  e.  R  /\  ( f  e.  R  <->  ( r
( .s `  D
) h )  e.  R ) ) )
107 mapdrval.t . . . . . . . . . . . 12  |-  T  =  ( LSubSp `  D )
10827ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  r  e.  ( Base `  (Scalar `  U )
) )  /\  (
h  e.  R  /\  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R ) ) )  ->  U  e.  LMod )
109 mapdrval.r . . . . . . . . . . . . . . 15  |-  ( ph  ->  R  e.  T )
1101093ad2ant1 978 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  ->  R  e.  T )
111110adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y )  ->  R  e.  T )
112111ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  r  e.  ( Base `  (Scalar `  U )
) )  /\  (
h  e.  R  /\  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R ) ) )  ->  R  e.  T )
113 simplr 732 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  r  e.  ( Base `  (Scalar `  U )
) )  /\  (
h  e.  R  /\  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R ) ) )  ->  r  e.  ( Base `  (Scalar `  U
) ) )
114 simprl 733 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  r  e.  ( Base `  (Scalar `  U )
) )  /\  (
h  e.  R  /\  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R ) ) )  ->  h  e.  R )
11547, 48, 10, 49, 107, 108, 112, 113, 114ldualssvscl 29883 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  r  e.  ( Base `  (Scalar `  U )
) )  /\  (
h  e.  R  /\  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R ) ) )  ->  ( r
( .s `  D
) h )  e.  R )
116 bi2 190 . . . . . . . . . . . 12  |-  ( ( f  e.  R  <->  ( r
( .s `  D
) h )  e.  R )  ->  (
( r ( .s
`  D ) h )  e.  R  -> 
f  e.  R ) )
117116ad2antll 710 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  r  e.  ( Base `  (Scalar `  U )
) )  /\  (
h  e.  R  /\  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R ) ) )  ->  ( (
r ( .s `  D ) h )  e.  R  ->  f  e.  R ) )
118115, 117mpd 15 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  r  e.  ( Base `  (Scalar `  U )
) )  /\  (
h  e.  R  /\  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R ) ) )  ->  f  e.  R )
119118ex 424 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  r  e.  ( Base `  (Scalar `  U )
) )  ->  (
( h  e.  R  /\  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R ) )  ->  f  e.  R
) )
120119exlimdv 1646 . . . . . . . 8  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  r  e.  ( Base `  (Scalar `  U )
) )  ->  ( E. h ( h  e.  R  /\  ( f  e.  R  <->  ( r
( .s `  D
) h )  e.  R ) )  -> 
f  e.  R ) )
121120rexlimdva 2822 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y )  ->  ( E. r  e.  ( Base `  (Scalar `  U
) ) E. h
( h  e.  R  /\  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R ) )  ->  f  e.  R
) )
1221213ad2ant1 978 . . . . . 6  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  ( E. r  e.  ( Base `  (Scalar `  U
) ) E. h
( h  e.  R  /\  ( f  e.  R  <->  ( r ( .s `  D ) h )  e.  R ) )  ->  f  e.  R
) )
123106, 122mpd 15 . . . . 5  |-  ( ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  Q )  /\  f  =/=  Y )  /\  x  e.  ( V  \  {  .0.  } )  /\  ( O `  ( L `  f ) )  =  ( N `
 { x }
) )  ->  f  e.  R )
124123rexlimdv3a 2824 . . . 4  |-  ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y )  ->  ( E. x  e.  ( V  \  {  .0.  }
) ( O `  ( L `  f ) )  =  ( N `
 { x }
)  ->  f  e.  R ) )
12520, 124mpd 15 . . 3  |-  ( ( ( ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  /\  f  =/=  Y )  ->  f  e.  R )
12610, 25lduallmod 29878 . . . . 5  |-  ( ph  ->  D  e.  LMod )
1271263ad2ant1 978 . . . 4  |-  ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  ->  D  e.  LMod )
12811, 107lss0cl 16015 . . . 4  |-  ( ( D  e.  LMod  /\  R  e.  T )  ->  Y  e.  R )
129127, 110, 128syl2anc 643 . . 3  |-  ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  ->  Y  e.  R )
1301, 125, 129pm2.61ne 2673 . 2  |-  ( (
ph  /\  f  e.  C  /\  ( O `  ( L `  f ) )  C_  Q )  ->  f  e.  R )
131130rabssdv 3415 1  |-  ( ph  ->  { f  e.  C  |  ( O `  ( L `  f ) )  C_  Q }  C_  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1550    = wceq 1652    e. wcel 1725    =/= wne 2598   E.wrex 2698   {crab 2701    \ cdif 3309    C_ wss 3312   {csn 3806   U_ciun 4085   ran crn 4871   ` cfv 5446  (class class class)co 6073   Basecbs 13461  Scalarcsca 13524   .scvsca 13525   0gc0g 13715   LModclmod 15942   LSubSpclss 16000   LSpanclspn 16039   LVecclvec 16166  LSAtomsclsa 29699  LFnlclfn 29782  LKerclk 29810  LDualcld 29848   HLchlt 30075   LHypclh 30708   DVecHcdvh 31803   DIsoHcdih 31953   ocHcoch 32072  mapdcmpd 32349
This theorem is referenced by:  mapdrvallem3  32371
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-fal 1329  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-tpos 6471  df-undef 6535  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-sca 13537  df-vsca 13538  df-0g 13719  df-poset 14395  df-plt 14407  df-lub 14423  df-glb 14424  df-join 14425  df-meet 14426  df-p0 14460  df-p1 14461  df-lat 14467  df-clat 14529  df-mnd 14682  df-submnd 14731  df-grp 14804  df-minusg 14805  df-sbg 14806  df-subg 14933  df-cntz 15108  df-lsm 15262  df-cmn 15406  df-abl 15407  df-mgp 15641  df-rng 15655  df-ur 15657  df-oppr 15720  df-dvdsr 15738  df-unit 15739  df-invr 15769  df-dvr 15780  df-drng 15829  df-lmod 15944  df-lss 16001  df-lsp 16040  df-lvec 16167  df-lsatoms 29701  df-lshyp 29702  df-lfl 29783  df-lkr 29811  df-ldual 29849  df-oposet 29901  df-ol 29903  df-oml 29904  df-covers 29991  df-ats 29992  df-atl 30023  df-cvlat 30047  df-hlat 30076  df-llines 30222  df-lplanes 30223  df-lvols 30224  df-lines 30225  df-psubsp 30227  df-pmap 30228  df-padd 30520  df-lhyp 30712  df-laut 30713  df-ldil 30828  df-ltrn 30829  df-trl 30883  df-tgrp 31467  df-tendo 31479  df-edring 31481  df-dveca 31727  df-disoa 31754  df-dvech 31804  df-dib 31864  df-dic 31898  df-dih 31954  df-doch 32073  df-djh 32120
  Copyright terms: Public domain W3C validator