Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdval4N Structured version   Unicode version

Theorem mapdval4N 32528
Description: Value of projectivity from vector space H to dual space. TODO: 1. This is shorter than others - make it the official def? (but is not as obvious that it is  C_  C) 2. The unneeded direction of lcfl8a 32399 has awkward  E.- add another thm with only one direction of it? 3. Swap  O `  {
v } and  L `  f? (Contributed by NM, 31-Jan-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdval4.h  |-  H  =  ( LHyp `  K
)
mapdval4.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdval4.s  |-  S  =  ( LSubSp `  U )
mapdval4.f  |-  F  =  (LFnl `  U )
mapdval4.l  |-  L  =  (LKer `  U )
mapdval4.o  |-  O  =  ( ( ocH `  K
) `  W )
mapdval4.m  |-  M  =  ( (mapd `  K
) `  W )
mapdval4.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdval4.t  |-  ( ph  ->  T  e.  S )
Assertion
Ref Expression
mapdval4N  |-  ( ph  ->  ( M `  T
)  =  { f  e.  F  |  E. v  e.  T  ( O `  { v } )  =  ( L `  f ) } )
Distinct variable groups:    v, f, F    f, K    v, L    v, O    T, f, v    v, U    f, W    ph, f, v
Allowed substitution hints:    S( v, f)    U( f)    H( v, f)    K( v)    L( f)    M( v, f)    O( f)    W( v)

Proof of Theorem mapdval4N
Dummy variables  g  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapdval4.h . . 3  |-  H  =  ( LHyp `  K
)
2 mapdval4.u . . 3  |-  U  =  ( ( DVecH `  K
) `  W )
3 mapdval4.s . . 3  |-  S  =  ( LSubSp `  U )
4 eqid 2442 . . 3  |-  ( LSpan `  U )  =  (
LSpan `  U )
5 mapdval4.f . . 3  |-  F  =  (LFnl `  U )
6 mapdval4.l . . 3  |-  L  =  (LKer `  U )
7 mapdval4.o . . 3  |-  O  =  ( ( ocH `  K
) `  W )
8 mapdval4.m . . 3  |-  M  =  ( (mapd `  K
) `  W )
9 mapdval4.k . . 3  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
10 mapdval4.t . . 3  |-  ( ph  ->  T  e.  S )
11 eqid 2442 . . 3  |-  { g  e.  F  |  ( O `  ( O `
 ( L `  g ) ) )  =  ( L `  g ) }  =  { g  e.  F  |  ( O `  ( O `  ( L `
 g ) ) )  =  ( L `
 g ) }
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11mapdval2N 32526 . 2  |-  ( ph  ->  ( M `  T
)  =  { f  e.  { g  e.  F  |  ( O `
 ( O `  ( L `  g ) ) )  =  ( L `  g ) }  |  E. v  e.  T  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) } )
1311lcfl1lem 32387 . . . . . . 7  |-  ( f  e.  { g  e.  F  |  ( O `
 ( O `  ( L `  g ) ) )  =  ( L `  g ) }  <->  ( f  e.  F  /\  ( O `
 ( O `  ( L `  f ) ) )  =  ( L `  f ) ) )
1413anbi1i 678 . . . . . 6  |-  ( ( f  e.  { g  e.  F  |  ( O `  ( O `
 ( L `  g ) ) )  =  ( L `  g ) }  /\  E. v  e.  T  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) )  <-> 
( ( f  e.  F  /\  ( O `
 ( O `  ( L `  f ) ) )  =  ( L `  f ) )  /\  E. v  e.  T  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) ) )
15 anass 632 . . . . . 6  |-  ( ( ( f  e.  F  /\  ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f ) )  /\  E. v  e.  T  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) )  <-> 
( f  e.  F  /\  ( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  E. v  e.  T  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) ) ) )
1614, 15bitri 242 . . . . 5  |-  ( ( f  e.  { g  e.  F  |  ( O `  ( O `
 ( L `  g ) ) )  =  ( L `  g ) }  /\  E. v  e.  T  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) )  <-> 
( f  e.  F  /\  ( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  E. v  e.  T  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) ) ) )
17 r19.42v 2868 . . . . . . 7  |-  ( E. v  e.  T  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  =  ( ( LSpan `  U
) `  { v } ) )  <->  ( ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
)  /\  E. v  e.  T  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) ) )
18 simprr 735 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
)  /\  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) ) )  ->  ( O `  ( L `  f ) )  =  ( ( LSpan `  U
) `  { v } ) )
1918fveq2d 5761 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
)  /\  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) ) )  ->  ( O `  ( O `  ( L `  f
) ) )  =  ( O `  (
( LSpan `  U ) `  { v } ) ) )
20 simprl 734 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
)  /\  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) ) )  ->  ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
) )
21 eqid 2442 . . . . . . . . . . 11  |-  ( Base `  U )  =  (
Base `  U )
229adantr 453 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  F )  ->  ( K  e.  HL  /\  W  e.  H ) )
2322adantr 453 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  F )  /\  v  e.  T )  ->  ( K  e.  HL  /\  W  e.  H ) )
2423adantr 453 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
)  /\  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2510adantr 453 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  F )  ->  T  e.  S )
2621, 3lssel 16045 . . . . . . . . . . . . . 14  |-  ( ( T  e.  S  /\  v  e.  T )  ->  v  e.  ( Base `  U ) )
2725, 26sylan 459 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  F )  /\  v  e.  T )  ->  v  e.  ( Base `  U
) )
2827snssd 3967 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  F )  /\  v  e.  T )  ->  { v }  C_  ( Base `  U ) )
2928adantr 453 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
)  /\  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) ) )  ->  { v }  C_  ( Base `  U ) )
301, 2, 7, 21, 4, 24, 29dochocsp 32275 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
)  /\  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) ) )  ->  ( O `  ( ( LSpan `  U ) `  { v } ) )  =  ( O `
 { v } ) )
3119, 20, 303eqtr3rd 2483 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
)  /\  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) ) )  ->  ( O `  { v } )  =  ( L `  f ) )
3227adantr 453 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
v  e.  ( Base `  U ) )
33 simpr 449 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
( O `  {
v } )  =  ( L `  f
) )
3433eqcomd 2447 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
( L `  f
)  =  ( O `
 { v } ) )
35 sneq 3849 . . . . . . . . . . . . . . 15  |-  ( w  =  v  ->  { w }  =  { v } )
3635fveq2d 5761 . . . . . . . . . . . . . 14  |-  ( w  =  v  ->  ( O `  { w } )  =  ( O `  { v } ) )
3736eqeq2d 2453 . . . . . . . . . . . . 13  |-  ( w  =  v  ->  (
( L `  f
)  =  ( O `
 { w }
)  <->  ( L `  f )  =  ( O `  { v } ) ) )
3837rspcev 3058 . . . . . . . . . . . 12  |-  ( ( v  e.  ( Base `  U )  /\  ( L `  f )  =  ( O `  { v } ) )  ->  E. w  e.  ( Base `  U
) ( L `  f )  =  ( O `  { w } ) )
3932, 34, 38syl2anc 644 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  ->  E. w  e.  ( Base `  U ) ( L `  f )  =  ( O `  { w } ) )
4023adantr 453 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
41 simpllr 737 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
f  e.  F )
421, 7, 2, 21, 5, 6, 40, 41lcfl8a 32399 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  <->  E. w  e.  ( Base `  U
) ( L `  f )  =  ( O `  { w } ) ) )
4339, 42mpbird 225 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
( O `  ( O `  ( L `  f ) ) )  =  ( L `  f ) )
441, 2, 7, 21, 4, 23, 27dochocsn 32277 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  F )  /\  v  e.  T )  ->  ( O `  ( O `  { v } ) )  =  ( (
LSpan `  U ) `  { v } ) )
45 fveq2 5757 . . . . . . . . . . . 12  |-  ( ( O `  { v } )  =  ( L `  f )  ->  ( O `  ( O `  { v } ) )  =  ( O `  ( L `  f )
) )
4644, 45sylan9req 2495 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
( ( LSpan `  U
) `  { v } )  =  ( O `  ( L `
 f ) ) )
4746eqcomd 2447 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
( O `  ( L `  f )
)  =  ( (
LSpan `  U ) `  { v } ) )
4843, 47jca 520 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) ) )
4931, 48impbida 807 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  F )  /\  v  e.  T )  ->  (
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) )  <-> 
( O `  {
v } )  =  ( L `  f
) ) )
5049rexbidva 2728 . . . . . . 7  |-  ( (
ph  /\  f  e.  F )  ->  ( E. v  e.  T  ( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) )  <->  E. v  e.  T  ( O `  { v } )  =  ( L `  f ) ) )
5117, 50syl5bbr 252 . . . . . 6  |-  ( (
ph  /\  f  e.  F )  ->  (
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  E. v  e.  T  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) )  <->  E. v  e.  T  ( O `  { v } )  =  ( L `  f ) ) )
5251pm5.32da 624 . . . . 5  |-  ( ph  ->  ( ( f  e.  F  /\  ( ( O `  ( O `
 ( L `  f ) ) )  =  ( L `  f )  /\  E. v  e.  T  ( O `  ( L `  f ) )  =  ( ( LSpan `  U
) `  { v } ) ) )  <-> 
( f  e.  F  /\  E. v  e.  T  ( O `  { v } )  =  ( L `  f ) ) ) )
5316, 52syl5bb 250 . . . 4  |-  ( ph  ->  ( ( f  e. 
{ g  e.  F  |  ( O `  ( O `  ( L `
 g ) ) )  =  ( L `
 g ) }  /\  E. v  e.  T  ( O `  ( L `  f ) )  =  ( (
LSpan `  U ) `  { v } ) )  <->  ( f  e.  F  /\  E. v  e.  T  ( O `  { v } )  =  ( L `  f ) ) ) )
5453abbidv 2556 . . 3  |-  ( ph  ->  { f  |  ( f  e.  { g  e.  F  |  ( O `  ( O `
 ( L `  g ) ) )  =  ( L `  g ) }  /\  E. v  e.  T  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) ) }  =  { f  |  ( f  e.  F  /\  E. v  e.  T  ( O `  { v } )  =  ( L `  f ) ) } )
55 df-rab 2720 . . 3  |-  { f  e.  { g  e.  F  |  ( O `
 ( O `  ( L `  g ) ) )  =  ( L `  g ) }  |  E. v  e.  T  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) }  =  { f  |  ( f  e. 
{ g  e.  F  |  ( O `  ( O `  ( L `
 g ) ) )  =  ( L `
 g ) }  /\  E. v  e.  T  ( O `  ( L `  f ) )  =  ( (
LSpan `  U ) `  { v } ) ) }
56 df-rab 2720 . . 3  |-  { f  e.  F  |  E. v  e.  T  ( O `  { v } )  =  ( L `  f ) }  =  { f  |  ( f  e.  F  /\  E. v  e.  T  ( O `  { v } )  =  ( L `  f ) ) }
5754, 55, 563eqtr4g 2499 . 2  |-  ( ph  ->  { f  e.  {
g  e.  F  | 
( O `  ( O `  ( L `  g ) ) )  =  ( L `  g ) }  |  E. v  e.  T  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) }  =  { f  e.  F  |  E. v  e.  T  ( O `  { v } )  =  ( L `  f ) } )
5812, 57eqtrd 2474 1  |-  ( ph  ->  ( M `  T
)  =  { f  e.  F  |  E. v  e.  T  ( O `  { v } )  =  ( L `  f ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1727   {cab 2428   E.wrex 2712   {crab 2715    C_ wss 3306   {csn 3838   ` cfv 5483   Basecbs 13500   LSubSpclss 16039   LSpanclspn 16078  LFnlclfn 29953  LKerclk 29981   HLchlt 30246   LHypclh 30879   DVecHcdvh 31974   ocHcoch 32243  mapdcmpd 32520
This theorem is referenced by:  mapdval5N  32529  mapd1dim2lem1N  32540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-cnex 9077  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097  ax-pre-mulgt0 9098
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-fal 1330  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-int 4075  df-iun 4119  df-iin 4120  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379  df-tpos 6508  df-undef 6572  df-riota 6578  df-recs 6662  df-rdg 6697  df-1o 6753  df-oadd 6757  df-er 6934  df-map 7049  df-en 7139  df-dom 7140  df-sdom 7141  df-fin 7142  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-sub 9324  df-neg 9325  df-nn 10032  df-2 10089  df-3 10090  df-4 10091  df-5 10092  df-6 10093  df-n0 10253  df-z 10314  df-uz 10520  df-fz 11075  df-struct 13502  df-ndx 13503  df-slot 13504  df-base 13505  df-sets 13506  df-ress 13507  df-plusg 13573  df-mulr 13574  df-sca 13576  df-vsca 13577  df-0g 13758  df-poset 14434  df-plt 14446  df-lub 14462  df-glb 14463  df-join 14464  df-meet 14465  df-p0 14499  df-p1 14500  df-lat 14506  df-clat 14568  df-mnd 14721  df-submnd 14770  df-grp 14843  df-minusg 14844  df-sbg 14845  df-subg 14972  df-cntz 15147  df-lsm 15301  df-cmn 15445  df-abl 15446  df-mgp 15680  df-rng 15694  df-ur 15696  df-oppr 15759  df-dvdsr 15777  df-unit 15778  df-invr 15808  df-dvr 15819  df-drng 15868  df-lmod 15983  df-lss 16040  df-lsp 16079  df-lvec 16206  df-lsatoms 29872  df-lshyp 29873  df-lfl 29954  df-lkr 29982  df-oposet 30072  df-ol 30074  df-oml 30075  df-covers 30162  df-ats 30163  df-atl 30194  df-cvlat 30218  df-hlat 30247  df-llines 30393  df-lplanes 30394  df-lvols 30395  df-lines 30396  df-psubsp 30398  df-pmap 30399  df-padd 30691  df-lhyp 30883  df-laut 30884  df-ldil 30999  df-ltrn 31000  df-trl 31054  df-tgrp 31638  df-tendo 31650  df-edring 31652  df-dveca 31898  df-disoa 31925  df-dvech 31975  df-dib 32035  df-dic 32069  df-dih 32125  df-doch 32244  df-djh 32291  df-mapd 32521
  Copyright terms: Public domain W3C validator