MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapex Unicode version

Theorem mapex 6778
Description: The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of [Kunen] p. 31. (Contributed by Raph Levien, 4-Dec-2003.)
Assertion
Ref Expression
mapex  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  f : A --> B }  e.  _V )
Distinct variable groups:    A, f    B, f
Allowed substitution hints:    C( f)    D( f)

Proof of Theorem mapex
StepHypRef Expression
1 fssxp 5400 . . . 4  |-  ( f : A --> B  -> 
f  C_  ( A  X.  B ) )
21ss2abi 3245 . . 3  |-  { f  |  f : A --> B }  C_  { f  |  f  C_  ( A  X.  B ) }
3 df-pw 3627 . . 3  |-  ~P ( A  X.  B )  =  { f  |  f 
C_  ( A  X.  B ) }
42, 3sseqtr4i 3211 . 2  |-  { f  |  f : A --> B }  C_  ~P ( A  X.  B )
5 xpexg 4800 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  X.  B
)  e.  _V )
6 pwexg 4194 . . 3  |-  ( ( A  X.  B )  e.  _V  ->  ~P ( A  X.  B
)  e.  _V )
75, 6syl 15 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ~P ( A  X.  B )  e.  _V )
8 ssexg 4160 . 2  |-  ( ( { f  |  f : A --> B }  C_ 
~P ( A  X.  B )  /\  ~P ( A  X.  B
)  e.  _V )  ->  { f  |  f : A --> B }  e.  _V )
94, 7, 8sylancr 644 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  f : A --> B }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1684   {cab 2269   _Vcvv 2788    C_ wss 3152   ~Pcpw 3625    X. cxp 4687   -->wf 5251
This theorem is referenced by:  fnmap  6779  mapvalg  6782  isghm  14683  measbase  23528  measval  23529  ismeas  23530  isrnmeas  23531  cnfex  27699
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-cnv 4697  df-dm 4699  df-rn 4700  df-fun 5257  df-fn 5258  df-f 5259
  Copyright terms: Public domain W3C validator