Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapfzcons Unicode version

Theorem mapfzcons 26116
Description: Extending a one-based mapping by adding a tuple at the end results in another mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.)
Hypothesis
Ref Expression
mapfzcons.1  |-  M  =  ( N  +  1 )
Assertion
Ref Expression
mapfzcons  |-  ( ( N  e.  NN0  /\  A  e.  ( B  ^m  ( 1 ... N
) )  /\  C  e.  B )  ->  ( A  u.  { <. M ,  C >. } )  e.  ( B  ^m  (
1 ... M ) ) )

Proof of Theorem mapfzcons
StepHypRef Expression
1 simp2 956 . . . . . 6  |-  ( ( N  e.  NN0  /\  A  e.  ( B  ^m  ( 1 ... N
) )  /\  C  e.  B )  ->  A  e.  ( B  ^m  (
1 ... N ) ) )
2 elmapex 6876 . . . . . . . . 9  |-  ( A  e.  ( B  ^m  ( 1 ... N
) )  ->  ( B  e.  _V  /\  (
1 ... N )  e. 
_V ) )
32simpld 445 . . . . . . . 8  |-  ( A  e.  ( B  ^m  ( 1 ... N
) )  ->  B  e.  _V )
433ad2ant2 977 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A  e.  ( B  ^m  ( 1 ... N
) )  /\  C  e.  B )  ->  B  e.  _V )
5 ovex 5967 . . . . . . 7  |-  ( 1 ... N )  e. 
_V
6 elmapg 6870 . . . . . . 7  |-  ( ( B  e.  _V  /\  ( 1 ... N
)  e.  _V )  ->  ( A  e.  ( B  ^m  ( 1 ... N ) )  <-> 
A : ( 1 ... N ) --> B ) )
74, 5, 6sylancl 643 . . . . . 6  |-  ( ( N  e.  NN0  /\  A  e.  ( B  ^m  ( 1 ... N
) )  /\  C  e.  B )  ->  ( A  e.  ( B  ^m  ( 1 ... N
) )  <->  A :
( 1 ... N
) --> B ) )
81, 7mpbid 201 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ( B  ^m  ( 1 ... N
) )  /\  C  e.  B )  ->  A : ( 1 ... N ) --> B )
9 ovex 5967 . . . . . . . 8  |-  ( N  +  1 )  e. 
_V
10 simp3 957 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  A  e.  ( B  ^m  ( 1 ... N
) )  /\  C  e.  B )  ->  C  e.  B )
11 f1osng 5594 . . . . . . . 8  |-  ( ( ( N  +  1 )  e.  _V  /\  C  e.  B )  ->  { <. ( N  + 
1 ) ,  C >. } : { ( N  +  1 ) } -1-1-onto-> { C } )
129, 10, 11sylancr 644 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A  e.  ( B  ^m  ( 1 ... N
) )  /\  C  e.  B )  ->  { <. ( N  +  1 ) ,  C >. } : { ( N  + 
1 ) } -1-1-onto-> { C } )
13 f1of 5552 . . . . . . 7  |-  ( {
<. ( N  +  1 ) ,  C >. } : { ( N  +  1 ) } -1-1-onto-> { C }  ->  { <. ( N  +  1 ) ,  C >. } : { ( N  + 
1 ) } --> { C } )
1412, 13syl 15 . . . . . 6  |-  ( ( N  e.  NN0  /\  A  e.  ( B  ^m  ( 1 ... N
) )  /\  C  e.  B )  ->  { <. ( N  +  1 ) ,  C >. } : { ( N  + 
1 ) } --> { C } )
15 snssi 3838 . . . . . . 7  |-  ( C  e.  B  ->  { C }  C_  B )
16153ad2ant3 978 . . . . . 6  |-  ( ( N  e.  NN0  /\  A  e.  ( B  ^m  ( 1 ... N
) )  /\  C  e.  B )  ->  { C }  C_  B )
17 fss 5477 . . . . . 6  |-  ( ( { <. ( N  + 
1 ) ,  C >. } : { ( N  +  1 ) } --> { C }  /\  { C }  C_  B )  ->  { <. ( N  +  1 ) ,  C >. } : { ( N  + 
1 ) } --> B )
1814, 16, 17syl2anc 642 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ( B  ^m  ( 1 ... N
) )  /\  C  e.  B )  ->  { <. ( N  +  1 ) ,  C >. } : { ( N  + 
1 ) } --> B )
19 fzp1disj 10932 . . . . . 6  |-  ( ( 1 ... N )  i^i  { ( N  +  1 ) } )  =  (/)
2019a1i 10 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ( B  ^m  ( 1 ... N
) )  /\  C  e.  B )  ->  (
( 1 ... N
)  i^i  { ( N  +  1 ) } )  =  (/) )
21 fun 5485 . . . . 5  |-  ( ( ( A : ( 1 ... N ) --> B  /\  { <. ( N  +  1 ) ,  C >. } : { ( N  + 
1 ) } --> B )  /\  ( ( 1 ... N )  i^i 
{ ( N  + 
1 ) } )  =  (/) )  ->  ( A  u.  { <. ( N  +  1 ) ,  C >. } ) : ( ( 1 ... N )  u. 
{ ( N  + 
1 ) } ) --> ( B  u.  B
) )
228, 18, 20, 21syl21anc 1181 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ( B  ^m  ( 1 ... N
) )  /\  C  e.  B )  ->  ( A  u.  { <. ( N  +  1 ) ,  C >. } ) : ( ( 1 ... N )  u. 
{ ( N  + 
1 ) } ) --> ( B  u.  B
) )
23 1z 10142 . . . . . . 7  |-  1  e.  ZZ
24 simp1 955 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  A  e.  ( B  ^m  ( 1 ... N
) )  /\  C  e.  B )  ->  N  e.  NN0 )
25 nn0uz 10351 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
26 1m1e0 9901 . . . . . . . . . 10  |-  ( 1  -  1 )  =  0
2726fveq2i 5608 . . . . . . . . 9  |-  ( ZZ>= `  ( 1  -  1 ) )  =  (
ZZ>= `  0 )
2825, 27eqtr4i 2381 . . . . . . . 8  |-  NN0  =  ( ZZ>= `  ( 1  -  1 ) )
2924, 28syl6eleq 2448 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A  e.  ( B  ^m  ( 1 ... N
) )  /\  C  e.  B )  ->  N  e.  ( ZZ>= `  ( 1  -  1 ) ) )
30 fzsuc2 10931 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  N  e.  ( ZZ>= `  ( 1  -  1 ) ) )  -> 
( 1 ... ( N  +  1 ) )  =  ( ( 1 ... N )  u.  { ( N  +  1 ) } ) )
3123, 29, 30sylancr 644 . . . . . 6  |-  ( ( N  e.  NN0  /\  A  e.  ( B  ^m  ( 1 ... N
) )  /\  C  e.  B )  ->  (
1 ... ( N  + 
1 ) )  =  ( ( 1 ... N )  u.  {
( N  +  1 ) } ) )
3231eqcomd 2363 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ( B  ^m  ( 1 ... N
) )  /\  C  e.  B )  ->  (
( 1 ... N
)  u.  { ( N  +  1 ) } )  =  ( 1 ... ( N  +  1 ) ) )
33 unidm 3394 . . . . . 6  |-  ( B  u.  B )  =  B
3433a1i 10 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ( B  ^m  ( 1 ... N
) )  /\  C  e.  B )  ->  ( B  u.  B )  =  B )
3532, 34feq23d 5466 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ( B  ^m  ( 1 ... N
) )  /\  C  e.  B )  ->  (
( A  u.  { <. ( N  +  1 ) ,  C >. } ) : ( ( 1 ... N )  u.  { ( N  +  1 ) } ) --> ( B  u.  B )  <->  ( A  u.  { <. ( N  + 
1 ) ,  C >. } ) : ( 1 ... ( N  +  1 ) ) --> B ) )
3622, 35mpbid 201 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ( B  ^m  ( 1 ... N
) )  /\  C  e.  B )  ->  ( A  u.  { <. ( N  +  1 ) ,  C >. } ) : ( 1 ... ( N  +  1 ) ) --> B )
37 ovex 5967 . . . 4  |-  ( 1 ... ( N  + 
1 ) )  e. 
_V
38 elmapg 6870 . . . 4  |-  ( ( B  e.  _V  /\  ( 1 ... ( N  +  1 ) )  e.  _V )  ->  ( ( A  u.  {
<. ( N  +  1 ) ,  C >. } )  e.  ( B  ^m  ( 1 ... ( N  +  1 ) ) )  <->  ( A  u.  { <. ( N  + 
1 ) ,  C >. } ) : ( 1 ... ( N  +  1 ) ) --> B ) )
394, 37, 38sylancl 643 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ( B  ^m  ( 1 ... N
) )  /\  C  e.  B )  ->  (
( A  u.  { <. ( N  +  1 ) ,  C >. } )  e.  ( B  ^m  ( 1 ... ( N  +  1 ) ) )  <->  ( A  u.  { <. ( N  + 
1 ) ,  C >. } ) : ( 1 ... ( N  +  1 ) ) --> B ) )
4036, 39mpbird 223 . 2  |-  ( ( N  e.  NN0  /\  A  e.  ( B  ^m  ( 1 ... N
) )  /\  C  e.  B )  ->  ( A  u.  { <. ( N  +  1 ) ,  C >. } )  e.  ( B  ^m  ( 1 ... ( N  +  1 ) ) ) )
41 mapfzcons.1 . . . . . 6  |-  M  =  ( N  +  1 )
4241opeq1i 3878 . . . . 5  |-  <. M ,  C >.  =  <. ( N  +  1 ) ,  C >.
4342sneqi 3728 . . . 4  |-  { <. M ,  C >. }  =  { <. ( N  + 
1 ) ,  C >. }
4443uneq2i 3402 . . 3  |-  ( A  u.  { <. M ,  C >. } )  =  ( A  u.  { <. ( N  +  1 ) ,  C >. } )
4541oveq2i 5953 . . . 4  |-  ( 1 ... M )  =  ( 1 ... ( N  +  1 ) )
4645oveq2i 5953 . . 3  |-  ( B  ^m  ( 1 ... M ) )  =  ( B  ^m  (
1 ... ( N  + 
1 ) ) )
4744, 46eleq12i 2423 . 2  |-  ( ( A  u.  { <. M ,  C >. } )  e.  ( B  ^m  ( 1 ... M
) )  <->  ( A  u.  { <. ( N  + 
1 ) ,  C >. } )  e.  ( B  ^m  ( 1 ... ( N  + 
1 ) ) ) )
4840, 47sylibr 203 1  |-  ( ( N  e.  NN0  /\  A  e.  ( B  ^m  ( 1 ... N
) )  /\  C  e.  B )  ->  ( A  u.  { <. M ,  C >. } )  e.  ( B  ^m  (
1 ... M ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ w3a 934    = wceq 1642    e. wcel 1710   _Vcvv 2864    u. cun 3226    i^i cin 3227    C_ wss 3228   (/)c0 3531   {csn 3716   <.cop 3719   -->wf 5330   -1-1-onto->wf1o 5333   ` cfv 5334  (class class class)co 5942    ^m cmap 6857   0cc0 8824   1c1 8825    + caddc 8827    - cmin 9124   NN0cn0 10054   ZZcz 10113   ZZ>=cuz 10319   ...cfz 10871
This theorem is referenced by:  rexrabdioph  26198
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-cnex 8880  ax-resscn 8881  ax-1cn 8882  ax-icn 8883  ax-addcl 8884  ax-addrcl 8885  ax-mulcl 8886  ax-mulrcl 8887  ax-mulcom 8888  ax-addass 8889  ax-mulass 8890  ax-distr 8891  ax-i2m1 8892  ax-1ne0 8893  ax-1rid 8894  ax-rnegex 8895  ax-rrecex 8896  ax-cnre 8897  ax-pre-lttri 8898  ax-pre-lttrn 8899  ax-pre-ltadd 8900  ax-pre-mulgt0 8901
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-1st 6206  df-2nd 6207  df-riota 6388  df-recs 6472  df-rdg 6507  df-er 6744  df-map 6859  df-en 6949  df-dom 6950  df-sdom 6951  df-pnf 8956  df-mnf 8957  df-xr 8958  df-ltxr 8959  df-le 8960  df-sub 9126  df-neg 9127  df-nn 9834  df-n0 10055  df-z 10114  df-uz 10320  df-fz 10872
  Copyright terms: Public domain W3C validator