MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsncnv Unicode version

Theorem mapsncnv 6997
Description: Expression for the inverse of the canonical map between a set and its set of singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s  |-  S  =  { X }
mapsncnv.b  |-  B  e. 
_V
mapsncnv.x  |-  X  e. 
_V
mapsncnv.f  |-  F  =  ( x  e.  ( B  ^m  S ) 
|->  ( x `  X
) )
Assertion
Ref Expression
mapsncnv  |-  `' F  =  ( y  e.  B  |->  ( S  X.  { y } ) )
Distinct variable groups:    x, B, y    x, S, y    y, X
Allowed substitution hints:    F( x, y)    X( x)

Proof of Theorem mapsncnv
StepHypRef Expression
1 elmapi 6975 . . . . . . . . 9  |-  ( x  e.  ( B  ^m  { X } )  ->  x : { X } --> B )
2 mapsncnv.x . . . . . . . . . 10  |-  X  e. 
_V
32snid 3785 . . . . . . . . 9  |-  X  e. 
{ X }
4 ffvelrn 5808 . . . . . . . . 9  |-  ( ( x : { X }
--> B  /\  X  e. 
{ X } )  ->  ( x `  X )  e.  B
)
51, 3, 4sylancl 644 . . . . . . . 8  |-  ( x  e.  ( B  ^m  { X } )  -> 
( x `  X
)  e.  B )
6 eqid 2388 . . . . . . . . 9  |-  { X }  =  { X }
7 mapsncnv.b . . . . . . . . 9  |-  B  e. 
_V
86, 7, 2mapsnconst 6996 . . . . . . . 8  |-  ( x  e.  ( B  ^m  { X } )  ->  x  =  ( { X }  X.  { ( x `  X ) } ) )
95, 8jca 519 . . . . . . 7  |-  ( x  e.  ( B  ^m  { X } )  -> 
( ( x `  X )  e.  B  /\  x  =  ( { X }  X.  {
( x `  X
) } ) ) )
10 eleq1 2448 . . . . . . . 8  |-  ( y  =  ( x `  X )  ->  (
y  e.  B  <->  ( x `  X )  e.  B
) )
11 sneq 3769 . . . . . . . . . 10  |-  ( y  =  ( x `  X )  ->  { y }  =  { ( x `  X ) } )
1211xpeq2d 4843 . . . . . . . . 9  |-  ( y  =  ( x `  X )  ->  ( { X }  X.  {
y } )  =  ( { X }  X.  { ( x `  X ) } ) )
1312eqeq2d 2399 . . . . . . . 8  |-  ( y  =  ( x `  X )  ->  (
x  =  ( { X }  X.  {
y } )  <->  x  =  ( { X }  X.  { ( x `  X ) } ) ) )
1410, 13anbi12d 692 . . . . . . 7  |-  ( y  =  ( x `  X )  ->  (
( y  e.  B  /\  x  =  ( { X }  X.  {
y } ) )  <-> 
( ( x `  X )  e.  B  /\  x  =  ( { X }  X.  {
( x `  X
) } ) ) ) )
159, 14syl5ibrcom 214 . . . . . 6  |-  ( x  e.  ( B  ^m  { X } )  -> 
( y  =  ( x `  X )  ->  ( y  e.  B  /\  x  =  ( { X }  X.  { y } ) ) ) )
1615imp 419 . . . . 5  |-  ( ( x  e.  ( B  ^m  { X }
)  /\  y  =  ( x `  X
) )  ->  (
y  e.  B  /\  x  =  ( { X }  X.  { y } ) ) )
17 fconst6g 5573 . . . . . . . . 9  |-  ( y  e.  B  ->  ( { X }  X.  {
y } ) : { X } --> B )
18 snex 4347 . . . . . . . . . 10  |-  { X }  e.  _V
197, 18elmap 6979 . . . . . . . . 9  |-  ( ( { X }  X.  { y } )  e.  ( B  ^m  { X } )  <->  ( { X }  X.  { y } ) : { X } --> B )
2017, 19sylibr 204 . . . . . . . 8  |-  ( y  e.  B  ->  ( { X }  X.  {
y } )  e.  ( B  ^m  { X } ) )
21 vex 2903 . . . . . . . . . . 11  |-  y  e. 
_V
2221fvconst2 5887 . . . . . . . . . 10  |-  ( X  e.  { X }  ->  ( ( { X }  X.  { y } ) `  X )  =  y )
233, 22mp1i 12 . . . . . . . . 9  |-  ( y  e.  B  ->  (
( { X }  X.  { y } ) `
 X )  =  y )
2423eqcomd 2393 . . . . . . . 8  |-  ( y  e.  B  ->  y  =  ( ( { X }  X.  {
y } ) `  X ) )
2520, 24jca 519 . . . . . . 7  |-  ( y  e.  B  ->  (
( { X }  X.  { y } )  e.  ( B  ^m  { X } )  /\  y  =  ( ( { X }  X.  {
y } ) `  X ) ) )
26 eleq1 2448 . . . . . . . 8  |-  ( x  =  ( { X }  X.  { y } )  ->  ( x  e.  ( B  ^m  { X } )  <->  ( { X }  X.  { y } )  e.  ( B  ^m  { X } ) ) )
27 fveq1 5668 . . . . . . . . 9  |-  ( x  =  ( { X }  X.  { y } )  ->  ( x `  X )  =  ( ( { X }  X.  { y } ) `
 X ) )
2827eqeq2d 2399 . . . . . . . 8  |-  ( x  =  ( { X }  X.  { y } )  ->  ( y  =  ( x `  X )  <->  y  =  ( ( { X }  X.  { y } ) `  X ) ) )
2926, 28anbi12d 692 . . . . . . 7  |-  ( x  =  ( { X }  X.  { y } )  ->  ( (
x  e.  ( B  ^m  { X }
)  /\  y  =  ( x `  X
) )  <->  ( ( { X }  X.  {
y } )  e.  ( B  ^m  { X } )  /\  y  =  ( ( { X }  X.  {
y } ) `  X ) ) ) )
3025, 29syl5ibrcom 214 . . . . . 6  |-  ( y  e.  B  ->  (
x  =  ( { X }  X.  {
y } )  -> 
( x  e.  ( B  ^m  { X } )  /\  y  =  ( x `  X ) ) ) )
3130imp 419 . . . . 5  |-  ( ( y  e.  B  /\  x  =  ( { X }  X.  { y } ) )  -> 
( x  e.  ( B  ^m  { X } )  /\  y  =  ( x `  X ) ) )
3216, 31impbii 181 . . . 4  |-  ( ( x  e.  ( B  ^m  { X }
)  /\  y  =  ( x `  X
) )  <->  ( y  e.  B  /\  x  =  ( { X }  X.  { y } ) ) )
33 mapsncnv.s . . . . . . 7  |-  S  =  { X }
3433oveq2i 6032 . . . . . 6  |-  ( B  ^m  S )  =  ( B  ^m  { X } )
3534eleq2i 2452 . . . . 5  |-  ( x  e.  ( B  ^m  S )  <->  x  e.  ( B  ^m  { X } ) )
3635anbi1i 677 . . . 4  |-  ( ( x  e.  ( B  ^m  S )  /\  y  =  ( x `  X ) )  <->  ( x  e.  ( B  ^m  { X } )  /\  y  =  ( x `  X ) ) )
3733xpeq1i 4839 . . . . . 6  |-  ( S  X.  { y } )  =  ( { X }  X.  {
y } )
3837eqeq2i 2398 . . . . 5  |-  ( x  =  ( S  X.  { y } )  <-> 
x  =  ( { X }  X.  {
y } ) )
3938anbi2i 676 . . . 4  |-  ( ( y  e.  B  /\  x  =  ( S  X.  { y } ) )  <->  ( y  e.  B  /\  x  =  ( { X }  X.  { y } ) ) )
4032, 36, 393bitr4i 269 . . 3  |-  ( ( x  e.  ( B  ^m  S )  /\  y  =  ( x `  X ) )  <->  ( y  e.  B  /\  x  =  ( S  X.  { y } ) ) )
4140opabbii 4214 . 2  |-  { <. y ,  x >.  |  ( x  e.  ( B  ^m  S )  /\  y  =  ( x `  X ) ) }  =  { <. y ,  x >.  |  (
y  e.  B  /\  x  =  ( S  X.  { y } ) ) }
42 mapsncnv.f . . . . 5  |-  F  =  ( x  e.  ( B  ^m  S ) 
|->  ( x `  X
) )
43 df-mpt 4210 . . . . 5  |-  ( x  e.  ( B  ^m  S )  |->  ( x `
 X ) )  =  { <. x ,  y >.  |  ( x  e.  ( B  ^m  S )  /\  y  =  ( x `  X ) ) }
4442, 43eqtri 2408 . . . 4  |-  F  =  { <. x ,  y
>.  |  ( x  e.  ( B  ^m  S
)  /\  y  =  ( x `  X
) ) }
4544cnveqi 4988 . . 3  |-  `' F  =  `' { <. x ,  y
>.  |  ( x  e.  ( B  ^m  S
)  /\  y  =  ( x `  X
) ) }
46 cnvopab 5215 . . 3  |-  `' { <. x ,  y >.  |  ( x  e.  ( B  ^m  S
)  /\  y  =  ( x `  X
) ) }  =  { <. y ,  x >.  |  ( x  e.  ( B  ^m  S
)  /\  y  =  ( x `  X
) ) }
4745, 46eqtri 2408 . 2  |-  `' F  =  { <. y ,  x >.  |  ( x  e.  ( B  ^m  S
)  /\  y  =  ( x `  X
) ) }
48 df-mpt 4210 . 2  |-  ( y  e.  B  |->  ( S  X.  { y } ) )  =  { <. y ,  x >.  |  ( y  e.  B  /\  x  =  ( S  X.  { y } ) ) }
4941, 47, 483eqtr4i 2418 1  |-  `' F  =  ( y  e.  B  |->  ( S  X.  { y } ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 359    = wceq 1649    e. wcel 1717   _Vcvv 2900   {csn 3758   {copab 4207    e. cmpt 4208    X. cxp 4817   `'ccnv 4818   -->wf 5391   ` cfv 5395  (class class class)co 6021    ^m cmap 6955
This theorem is referenced by:  mapsnf1o2  6998  mapsnf1o3  6999  coe1sfi  16538  evl1var  19820  pf1mpf  19840  pf1ind  19843  deg1val  19887
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-map 6957
  Copyright terms: Public domain W3C validator