MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsncnv Unicode version

Theorem mapsncnv 6830
Description: Expression for the inverse of the canonical map between a set and its set of singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s  |-  S  =  { X }
mapsncnv.b  |-  B  e. 
_V
mapsncnv.x  |-  X  e. 
_V
mapsncnv.f  |-  F  =  ( x  e.  ( B  ^m  S ) 
|->  ( x `  X
) )
Assertion
Ref Expression
mapsncnv  |-  `' F  =  ( y  e.  B  |->  ( S  X.  { y } ) )
Distinct variable groups:    x, B, y    x, S, y    y, X
Allowed substitution hints:    F( x, y)    X( x)

Proof of Theorem mapsncnv
StepHypRef Expression
1 elmapi 6808 . . . . . . . . 9  |-  ( x  e.  ( B  ^m  { X } )  ->  x : { X } --> B )
2 mapsncnv.x . . . . . . . . . 10  |-  X  e. 
_V
32snid 3680 . . . . . . . . 9  |-  X  e. 
{ X }
4 ffvelrn 5679 . . . . . . . . 9  |-  ( ( x : { X }
--> B  /\  X  e. 
{ X } )  ->  ( x `  X )  e.  B
)
51, 3, 4sylancl 643 . . . . . . . 8  |-  ( x  e.  ( B  ^m  { X } )  -> 
( x `  X
)  e.  B )
6 eqid 2296 . . . . . . . . 9  |-  { X }  =  { X }
7 mapsncnv.b . . . . . . . . 9  |-  B  e. 
_V
86, 7, 2mapsnconst 6829 . . . . . . . 8  |-  ( x  e.  ( B  ^m  { X } )  ->  x  =  ( { X }  X.  { ( x `  X ) } ) )
95, 8jca 518 . . . . . . 7  |-  ( x  e.  ( B  ^m  { X } )  -> 
( ( x `  X )  e.  B  /\  x  =  ( { X }  X.  {
( x `  X
) } ) ) )
10 eleq1 2356 . . . . . . . 8  |-  ( y  =  ( x `  X )  ->  (
y  e.  B  <->  ( x `  X )  e.  B
) )
11 sneq 3664 . . . . . . . . . 10  |-  ( y  =  ( x `  X )  ->  { y }  =  { ( x `  X ) } )
1211xpeq2d 4729 . . . . . . . . 9  |-  ( y  =  ( x `  X )  ->  ( { X }  X.  {
y } )  =  ( { X }  X.  { ( x `  X ) } ) )
1312eqeq2d 2307 . . . . . . . 8  |-  ( y  =  ( x `  X )  ->  (
x  =  ( { X }  X.  {
y } )  <->  x  =  ( { X }  X.  { ( x `  X ) } ) ) )
1410, 13anbi12d 691 . . . . . . 7  |-  ( y  =  ( x `  X )  ->  (
( y  e.  B  /\  x  =  ( { X }  X.  {
y } ) )  <-> 
( ( x `  X )  e.  B  /\  x  =  ( { X }  X.  {
( x `  X
) } ) ) ) )
159, 14syl5ibrcom 213 . . . . . 6  |-  ( x  e.  ( B  ^m  { X } )  -> 
( y  =  ( x `  X )  ->  ( y  e.  B  /\  x  =  ( { X }  X.  { y } ) ) ) )
1615imp 418 . . . . 5  |-  ( ( x  e.  ( B  ^m  { X }
)  /\  y  =  ( x `  X
) )  ->  (
y  e.  B  /\  x  =  ( { X }  X.  { y } ) ) )
17 fconst6g 5446 . . . . . . . . 9  |-  ( y  e.  B  ->  ( { X }  X.  {
y } ) : { X } --> B )
18 snex 4232 . . . . . . . . . 10  |-  { X }  e.  _V
197, 18elmap 6812 . . . . . . . . 9  |-  ( ( { X }  X.  { y } )  e.  ( B  ^m  { X } )  <->  ( { X }  X.  { y } ) : { X } --> B )
2017, 19sylibr 203 . . . . . . . 8  |-  ( y  e.  B  ->  ( { X }  X.  {
y } )  e.  ( B  ^m  { X } ) )
21 vex 2804 . . . . . . . . . . 11  |-  y  e. 
_V
2221fvconst2 5745 . . . . . . . . . 10  |-  ( X  e.  { X }  ->  ( ( { X }  X.  { y } ) `  X )  =  y )
233, 22mp1i 11 . . . . . . . . 9  |-  ( y  e.  B  ->  (
( { X }  X.  { y } ) `
 X )  =  y )
2423eqcomd 2301 . . . . . . . 8  |-  ( y  e.  B  ->  y  =  ( ( { X }  X.  {
y } ) `  X ) )
2520, 24jca 518 . . . . . . 7  |-  ( y  e.  B  ->  (
( { X }  X.  { y } )  e.  ( B  ^m  { X } )  /\  y  =  ( ( { X }  X.  {
y } ) `  X ) ) )
26 eleq1 2356 . . . . . . . 8  |-  ( x  =  ( { X }  X.  { y } )  ->  ( x  e.  ( B  ^m  { X } )  <->  ( { X }  X.  { y } )  e.  ( B  ^m  { X } ) ) )
27 fveq1 5540 . . . . . . . . 9  |-  ( x  =  ( { X }  X.  { y } )  ->  ( x `  X )  =  ( ( { X }  X.  { y } ) `
 X ) )
2827eqeq2d 2307 . . . . . . . 8  |-  ( x  =  ( { X }  X.  { y } )  ->  ( y  =  ( x `  X )  <->  y  =  ( ( { X }  X.  { y } ) `  X ) ) )
2926, 28anbi12d 691 . . . . . . 7  |-  ( x  =  ( { X }  X.  { y } )  ->  ( (
x  e.  ( B  ^m  { X }
)  /\  y  =  ( x `  X
) )  <->  ( ( { X }  X.  {
y } )  e.  ( B  ^m  { X } )  /\  y  =  ( ( { X }  X.  {
y } ) `  X ) ) ) )
3025, 29syl5ibrcom 213 . . . . . 6  |-  ( y  e.  B  ->  (
x  =  ( { X }  X.  {
y } )  -> 
( x  e.  ( B  ^m  { X } )  /\  y  =  ( x `  X ) ) ) )
3130imp 418 . . . . 5  |-  ( ( y  e.  B  /\  x  =  ( { X }  X.  { y } ) )  -> 
( x  e.  ( B  ^m  { X } )  /\  y  =  ( x `  X ) ) )
3216, 31impbii 180 . . . 4  |-  ( ( x  e.  ( B  ^m  { X }
)  /\  y  =  ( x `  X
) )  <->  ( y  e.  B  /\  x  =  ( { X }  X.  { y } ) ) )
33 mapsncnv.s . . . . . . 7  |-  S  =  { X }
3433oveq2i 5885 . . . . . 6  |-  ( B  ^m  S )  =  ( B  ^m  { X } )
3534eleq2i 2360 . . . . 5  |-  ( x  e.  ( B  ^m  S )  <->  x  e.  ( B  ^m  { X } ) )
3635anbi1i 676 . . . 4  |-  ( ( x  e.  ( B  ^m  S )  /\  y  =  ( x `  X ) )  <->  ( x  e.  ( B  ^m  { X } )  /\  y  =  ( x `  X ) ) )
3733xpeq1i 4725 . . . . . 6  |-  ( S  X.  { y } )  =  ( { X }  X.  {
y } )
3837eqeq2i 2306 . . . . 5  |-  ( x  =  ( S  X.  { y } )  <-> 
x  =  ( { X }  X.  {
y } ) )
3938anbi2i 675 . . . 4  |-  ( ( y  e.  B  /\  x  =  ( S  X.  { y } ) )  <->  ( y  e.  B  /\  x  =  ( { X }  X.  { y } ) ) )
4032, 36, 393bitr4i 268 . . 3  |-  ( ( x  e.  ( B  ^m  S )  /\  y  =  ( x `  X ) )  <->  ( y  e.  B  /\  x  =  ( S  X.  { y } ) ) )
4140opabbii 4099 . 2  |-  { <. y ,  x >.  |  ( x  e.  ( B  ^m  S )  /\  y  =  ( x `  X ) ) }  =  { <. y ,  x >.  |  (
y  e.  B  /\  x  =  ( S  X.  { y } ) ) }
42 mapsncnv.f . . . . 5  |-  F  =  ( x  e.  ( B  ^m  S ) 
|->  ( x `  X
) )
43 df-mpt 4095 . . . . 5  |-  ( x  e.  ( B  ^m  S )  |->  ( x `
 X ) )  =  { <. x ,  y >.  |  ( x  e.  ( B  ^m  S )  /\  y  =  ( x `  X ) ) }
4442, 43eqtri 2316 . . . 4  |-  F  =  { <. x ,  y
>.  |  ( x  e.  ( B  ^m  S
)  /\  y  =  ( x `  X
) ) }
4544cnveqi 4872 . . 3  |-  `' F  =  `' { <. x ,  y
>.  |  ( x  e.  ( B  ^m  S
)  /\  y  =  ( x `  X
) ) }
46 cnvopab 5099 . . 3  |-  `' { <. x ,  y >.  |  ( x  e.  ( B  ^m  S
)  /\  y  =  ( x `  X
) ) }  =  { <. y ,  x >.  |  ( x  e.  ( B  ^m  S
)  /\  y  =  ( x `  X
) ) }
4745, 46eqtri 2316 . 2  |-  `' F  =  { <. y ,  x >.  |  ( x  e.  ( B  ^m  S
)  /\  y  =  ( x `  X
) ) }
48 df-mpt 4095 . 2  |-  ( y  e.  B  |->  ( S  X.  { y } ) )  =  { <. y ,  x >.  |  ( y  e.  B  /\  x  =  ( S  X.  { y } ) ) }
4941, 47, 483eqtr4i 2326 1  |-  `' F  =  ( y  e.  B  |->  ( S  X.  { y } ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801   {csn 3653   {copab 4092    e. cmpt 4093    X. cxp 4703   `'ccnv 4704   -->wf 5267   ` cfv 5271  (class class class)co 5874    ^m cmap 6788
This theorem is referenced by:  mapsnf1o2  6831  mapsnf1o3  6832  coe1sfi  16309  evl1var  19431  pf1mpf  19451  pf1ind  19454  deg1val  19498
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-map 6790
  Copyright terms: Public domain W3C validator