MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsnconst Unicode version

Theorem mapsnconst 6997
Description: Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s  |-  S  =  { X }
mapsncnv.b  |-  B  e. 
_V
mapsncnv.x  |-  X  e. 
_V
Assertion
Ref Expression
mapsnconst  |-  ( F  e.  ( B  ^m  S )  ->  F  =  ( S  X.  { ( F `  X ) } ) )

Proof of Theorem mapsnconst
StepHypRef Expression
1 mapsncnv.b . . . 4  |-  B  e. 
_V
2 snex 4348 . . . 4  |-  { X }  e.  _V
31, 2elmap 6980 . . 3  |-  ( F  e.  ( B  ^m  { X } )  <->  F : { X } --> B )
4 mapsncnv.x . . . . . 6  |-  X  e. 
_V
54fsn2 5849 . . . . 5  |-  ( F : { X } --> B 
<->  ( ( F `  X )  e.  B  /\  F  =  { <. X ,  ( F `
 X ) >. } ) )
65simprbi 451 . . . 4  |-  ( F : { X } --> B  ->  F  =  { <. X ,  ( F `
 X ) >. } )
7 mapsncnv.s . . . . . 6  |-  S  =  { X }
87xpeq1i 4840 . . . . 5  |-  ( S  X.  { ( F `
 X ) } )  =  ( { X }  X.  {
( F `  X
) } )
9 fvex 5684 . . . . . 6  |-  ( F `
 X )  e. 
_V
104, 9xpsn 5851 . . . . 5  |-  ( { X }  X.  {
( F `  X
) } )  =  { <. X ,  ( F `  X )
>. }
118, 10eqtr2i 2410 . . . 4  |-  { <. X ,  ( F `  X ) >. }  =  ( S  X.  { ( F `  X ) } )
126, 11syl6eq 2437 . . 3  |-  ( F : { X } --> B  ->  F  =  ( S  X.  { ( F `  X ) } ) )
133, 12sylbi 188 . 2  |-  ( F  e.  ( B  ^m  { X } )  ->  F  =  ( S  X.  { ( F `  X ) } ) )
147oveq2i 6033 . 2  |-  ( B  ^m  S )  =  ( B  ^m  { X } )
1513, 14eleq2s 2481 1  |-  ( F  e.  ( B  ^m  S )  ->  F  =  ( S  X.  { ( F `  X ) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1717   _Vcvv 2901   {csn 3759   <.cop 3762    X. cxp 4818   -->wf 5392   ` cfv 5396  (class class class)co 6022    ^m cmap 6956
This theorem is referenced by:  mapsncnv  6998  fvcoe1  16534  coe1mul2lem1  16589  coe1mul2  16591
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-map 6958
  Copyright terms: Public domain W3C validator