MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsnf1o Unicode version

Theorem mapsnf1o 6873
Description: A bijection between a set and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
ixpsnf1o.f  |-  F  =  ( x  e.  A  |->  ( { I }  X.  { x } ) )
Assertion
Ref Expression
mapsnf1o  |-  ( ( A  e.  V  /\  I  e.  W )  ->  F : A -1-1-onto-> ( A  ^m  { I }
) )
Distinct variable groups:    x, I    x, A    x, V    x, W
Allowed substitution hint:    F( x)

Proof of Theorem mapsnf1o
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ixpsnf1o.f . . . 4  |-  F  =  ( x  e.  A  |->  ( { I }  X.  { x } ) )
21ixpsnf1o 6872 . . 3  |-  ( I  e.  W  ->  F : A -1-1-onto-> X_ y  e.  {
I } A )
32adantl 452 . 2  |-  ( ( A  e.  V  /\  I  e.  W )  ->  F : A -1-1-onto-> X_ y  e.  { I } A
)
4 snex 4232 . . . . 5  |-  { I }  e.  _V
5 ixpconstg 6841 . . . . . 6  |-  ( ( { I }  e.  _V  /\  A  e.  V
)  ->  X_ y  e. 
{ I } A  =  ( A  ^m  { I } ) )
65eqcomd 2301 . . . . 5  |-  ( ( { I }  e.  _V  /\  A  e.  V
)  ->  ( A  ^m  { I } )  =  X_ y  e.  {
I } A )
74, 6mpan 651 . . . 4  |-  ( A  e.  V  ->  ( A  ^m  { I }
)  =  X_ y  e.  { I } A
)
87adantr 451 . . 3  |-  ( ( A  e.  V  /\  I  e.  W )  ->  ( A  ^m  {
I } )  = 
X_ y  e.  {
I } A )
9 f1oeq3 5481 . . 3  |-  ( ( A  ^m  { I } )  =  X_ y  e.  { I } A  ->  ( F : A -1-1-onto-> ( A  ^m  {
I } )  <->  F : A
-1-1-onto-> X_ y  e.  { I } A ) )
108, 9syl 15 . 2  |-  ( ( A  e.  V  /\  I  e.  W )  ->  ( F : A -1-1-onto-> ( A  ^m  { I }
)  <->  F : A -1-1-onto-> X_ y  e.  { I } A
) )
113, 10mpbird 223 1  |-  ( ( A  e.  V  /\  I  e.  W )  ->  F : A -1-1-onto-> ( A  ^m  { I }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801   {csn 3653    e. cmpt 4093    X. cxp 4703   -1-1-onto->wf1o 5270  (class class class)co 5874    ^m cmap 6788   X_cixp 6833
This theorem is referenced by:  pwssnf1o  13413
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-map 6790  df-ixp 6834
  Copyright terms: Public domain W3C validator