MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsnf1o3 Unicode version

Theorem mapsnf1o3 7021
Description: Explicit bijection in the reverse of mapsnf1o2 7020. (Contributed by Stefan O'Rear, 24-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s  |-  S  =  { X }
mapsncnv.b  |-  B  e. 
_V
mapsncnv.x  |-  X  e. 
_V
mapsnf1o3.f  |-  F  =  ( y  e.  B  |->  ( S  X.  {
y } ) )
Assertion
Ref Expression
mapsnf1o3  |-  F : B
-1-1-onto-> ( B  ^m  S )
Distinct variable groups:    y, B    y, S    y, X
Allowed substitution hint:    F( y)

Proof of Theorem mapsnf1o3
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 mapsncnv.s . . . 4  |-  S  =  { X }
2 mapsncnv.b . . . 4  |-  B  e. 
_V
3 mapsncnv.x . . . 4  |-  X  e. 
_V
4 eqid 2404 . . . 4  |-  ( x  e.  ( B  ^m  S )  |->  ( x `
 X ) )  =  ( x  e.  ( B  ^m  S
)  |->  ( x `  X ) )
51, 2, 3, 4mapsnf1o2 7020 . . 3  |-  ( x  e.  ( B  ^m  S )  |->  ( x `
 X ) ) : ( B  ^m  S ) -1-1-onto-> B
6 f1ocnv 5646 . . 3  |-  ( ( x  e.  ( B  ^m  S )  |->  ( x `  X ) ) : ( B  ^m  S ) -1-1-onto-> B  ->  `' ( x  e.  ( B  ^m  S
)  |->  ( x `  X ) ) : B -1-1-onto-> ( B  ^m  S
) )
75, 6ax-mp 8 . 2  |-  `' ( x  e.  ( B  ^m  S )  |->  ( x `  X ) ) : B -1-1-onto-> ( B  ^m  S )
8 mapsnf1o3.f . . . 4  |-  F  =  ( y  e.  B  |->  ( S  X.  {
y } ) )
91, 2, 3, 4mapsncnv 7019 . . . 4  |-  `' ( x  e.  ( B  ^m  S )  |->  ( x `  X ) )  =  ( y  e.  B  |->  ( S  X.  { y } ) )
108, 9eqtr4i 2427 . . 3  |-  F  =  `' ( x  e.  ( B  ^m  S
)  |->  ( x `  X ) )
11 f1oeq1 5624 . . 3  |-  ( F  =  `' ( x  e.  ( B  ^m  S )  |->  ( x `
 X ) )  ->  ( F : B
-1-1-onto-> ( B  ^m  S )  <->  `' ( x  e.  ( B  ^m  S
)  |->  ( x `  X ) ) : B -1-1-onto-> ( B  ^m  S
) ) )
1210, 11ax-mp 8 . 2  |-  ( F : B -1-1-onto-> ( B  ^m  S
)  <->  `' ( x  e.  ( B  ^m  S
)  |->  ( x `  X ) ) : B -1-1-onto-> ( B  ^m  S
) )
137, 12mpbir 201 1  |-  F : B
-1-1-onto-> ( B  ^m  S )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    = wceq 1649    e. wcel 1721   _Vcvv 2916   {csn 3774    e. cmpt 4226    X. cxp 4835   `'ccnv 4836   -1-1-onto->wf1o 5412   ` cfv 5413  (class class class)co 6040    ^m cmap 6977
This theorem is referenced by:  coe1f2  16562  coe1add  16612  evl1rhm  19902  evl1sca  19903  pf1ind  19928  ismrer1  26437
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-map 6979
  Copyright terms: Public domain W3C validator