MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marypha2 Unicode version

Theorem marypha2 7208
Description: Version of marypha1 7203 using a functional family of sets instead of a relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Hypotheses
Ref Expression
marypha2.a  |-  ( ph  ->  A  e.  Fin )
marypha2.b  |-  ( ph  ->  F : A --> Fin )
marypha2.c  |-  ( (
ph  /\  d  C_  A )  ->  d  ~<_  U. ( F " d
) )
Assertion
Ref Expression
marypha2  |-  ( ph  ->  E. g ( g : A -1-1-> _V  /\  A. x  e.  A  ( g `  x )  e.  ( F `  x ) ) )
Distinct variable groups:    ph, d, g, x    A, d, g, x    F, d, g, x

Proof of Theorem marypha2
StepHypRef Expression
1 marypha2.a . . 3  |-  ( ph  ->  A  e.  Fin )
2 marypha2.b . . . . . 6  |-  ( ph  ->  F : A --> Fin )
3 ffn 5405 . . . . . 6  |-  ( F : A --> Fin  ->  F  Fn  A )
42, 3syl 15 . . . . 5  |-  ( ph  ->  F  Fn  A )
5 fniunfv 5789 . . . . 5  |-  ( F  Fn  A  ->  U_ x  e.  A  ( F `  x )  =  U. ran  F )
64, 5syl 15 . . . 4  |-  ( ph  ->  U_ x  e.  A  ( F `  x )  =  U. ran  F
)
7 ffvelrn 5679 . . . . . . 7  |-  ( ( F : A --> Fin  /\  x  e.  A )  ->  ( F `  x
)  e.  Fin )
82, 7sylan 457 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  e.  Fin )
98ralrimiva 2639 . . . . 5  |-  ( ph  ->  A. x  e.  A  ( F `  x )  e.  Fin )
10 iunfi 7160 . . . . 5  |-  ( ( A  e.  Fin  /\  A. x  e.  A  ( F `  x )  e.  Fin )  ->  U_ x  e.  A  ( F `  x )  e.  Fin )
111, 9, 10syl2anc 642 . . . 4  |-  ( ph  ->  U_ x  e.  A  ( F `  x )  e.  Fin )
126, 11eqeltrrd 2371 . . 3  |-  ( ph  ->  U. ran  F  e. 
Fin )
13 eqid 2296 . . . . 5  |-  U_ x  e.  A  ( {
x }  X.  ( F `  x )
)  =  U_ x  e.  A  ( {
x }  X.  ( F `  x )
)
1413marypha2lem1 7204 . . . 4  |-  U_ x  e.  A  ( {
x }  X.  ( F `  x )
)  C_  ( A  X.  U. ran  F )
1514a1i 10 . . 3  |-  ( ph  ->  U_ x  e.  A  ( { x }  X.  ( F `  x ) )  C_  ( A  X.  U. ran  F ) )
16 marypha2.c . . . 4  |-  ( (
ph  /\  d  C_  A )  ->  d  ~<_  U. ( F " d
) )
1713marypha2lem4 7207 . . . . 5  |-  ( ( F  Fn  A  /\  d  C_  A )  -> 
( U_ x  e.  A  ( { x }  X.  ( F `  x ) ) " d )  =  U. ( F
" d ) )
184, 17sylan 457 . . . 4  |-  ( (
ph  /\  d  C_  A )  ->  ( U_ x  e.  A  ( { x }  X.  ( F `  x ) ) " d )  =  U. ( F
" d ) )
1916, 18breqtrrd 4065 . . 3  |-  ( (
ph  /\  d  C_  A )  ->  d  ~<_  ( U_ x  e.  A  ( { x }  X.  ( F `  x ) ) " d ) )
201, 12, 15, 19marypha1 7203 . 2  |-  ( ph  ->  E. g  e.  ~P  U_ x  e.  A  ( { x }  X.  ( F `  x ) ) g : A -1-1-> U.
ran  F )
21 df-rex 2562 . . 3  |-  ( E. g  e.  ~P  U_ x  e.  A  ( { x }  X.  ( F `  x ) ) g : A -1-1-> U.
ran  F  <->  E. g ( g  e.  ~P U_ x  e.  A  ( {
x }  X.  ( F `  x )
)  /\  g : A -1-1-> U. ran  F ) )
22 ssv 3211 . . . . . . . 8  |-  U. ran  F 
C_  _V
23 f1ss 5458 . . . . . . . 8  |-  ( ( g : A -1-1-> U. ran  F  /\  U. ran  F 
C_  _V )  ->  g : A -1-1-> _V )
2422, 23mpan2 652 . . . . . . 7  |-  ( g : A -1-1-> U. ran  F  ->  g : A -1-1-> _V )
2524ad2antll 709 . . . . . 6  |-  ( (
ph  /\  ( g  e.  ~P U_ x  e.  A  ( { x }  X.  ( F `  x ) )  /\  g : A -1-1-> U. ran  F ) )  ->  g : A -1-1-> _V )
26 elpwi 3646 . . . . . . . 8  |-  ( g  e.  ~P U_ x  e.  A  ( {
x }  X.  ( F `  x )
)  ->  g  C_  U_ x  e.  A  ( { x }  X.  ( F `  x ) ) )
2726ad2antrl 708 . . . . . . 7  |-  ( (
ph  /\  ( g  e.  ~P U_ x  e.  A  ( { x }  X.  ( F `  x ) )  /\  g : A -1-1-> U. ran  F ) )  ->  g  C_ 
U_ x  e.  A  ( { x }  X.  ( F `  x ) ) )
284adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ~P U_ x  e.  A  ( { x }  X.  ( F `  x ) )  /\  g : A -1-1-> U. ran  F ) )  ->  F  Fn  A )
29 f1fn 5454 . . . . . . . . 9  |-  ( g : A -1-1-> U. ran  F  ->  g  Fn  A
)
3029ad2antll 709 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  ~P U_ x  e.  A  ( { x }  X.  ( F `  x ) )  /\  g : A -1-1-> U. ran  F ) )  ->  g  Fn  A )
3113marypha2lem3 7206 . . . . . . . 8  |-  ( ( F  Fn  A  /\  g  Fn  A )  ->  ( g  C_  U_ x  e.  A  ( {
x }  X.  ( F `  x )
)  <->  A. x  e.  A  ( g `  x
)  e.  ( F `
 x ) ) )
3228, 30, 31syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  ( g  e.  ~P U_ x  e.  A  ( { x }  X.  ( F `  x ) )  /\  g : A -1-1-> U. ran  F ) )  ->  (
g  C_  U_ x  e.  A  ( { x }  X.  ( F `  x ) )  <->  A. x  e.  A  ( g `  x )  e.  ( F `  x ) ) )
3327, 32mpbid 201 . . . . . 6  |-  ( (
ph  /\  ( g  e.  ~P U_ x  e.  A  ( { x }  X.  ( F `  x ) )  /\  g : A -1-1-> U. ran  F ) )  ->  A. x  e.  A  ( g `  x )  e.  ( F `  x ) )
3425, 33jca 518 . . . . 5  |-  ( (
ph  /\  ( g  e.  ~P U_ x  e.  A  ( { x }  X.  ( F `  x ) )  /\  g : A -1-1-> U. ran  F ) )  ->  (
g : A -1-1-> _V  /\ 
A. x  e.  A  ( g `  x
)  e.  ( F `
 x ) ) )
3534ex 423 . . . 4  |-  ( ph  ->  ( ( g  e. 
~P U_ x  e.  A  ( { x }  X.  ( F `  x ) )  /\  g : A -1-1-> U. ran  F )  ->  ( g : A -1-1-> _V  /\  A. x  e.  A  ( g `  x )  e.  ( F `  x ) ) ) )
3635eximdv 1612 . . 3  |-  ( ph  ->  ( E. g ( g  e.  ~P U_ x  e.  A  ( { x }  X.  ( F `  x ) )  /\  g : A -1-1-> U. ran  F )  ->  E. g ( g : A -1-1-> _V  /\  A. x  e.  A  ( g `  x )  e.  ( F `  x ) ) ) )
3721, 36syl5bi 208 . 2  |-  ( ph  ->  ( E. g  e. 
~P  U_ x  e.  A  ( { x }  X.  ( F `  x ) ) g : A -1-1-> U.
ran  F  ->  E. g
( g : A -1-1-> _V 
/\  A. x  e.  A  ( g `  x
)  e.  ( F `
 x ) ) ) )
3820, 37mpd 14 1  |-  ( ph  ->  E. g ( g : A -1-1-> _V  /\  A. x  e.  A  ( g `  x )  e.  ( F `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   _Vcvv 2801    C_ wss 3165   ~Pcpw 3638   {csn 3653   U.cuni 3843   U_ciun 3921   class class class wbr 4039    X. cxp 4703   ran crn 4706   "cima 4708    Fn wfn 5266   -->wf 5267   -1-1->wf1 5268   ` cfv 5271    ~<_ cdom 6877   Fincfn 6879
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883
  Copyright terms: Public domain W3C validator