MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marypha2lem4 Unicode version

Theorem marypha2lem4 7371
Description: Lemma for marypha2 7372. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Hypothesis
Ref Expression
marypha2lem.t  |-  T  = 
U_ x  e.  A  ( { x }  X.  ( F `  x ) )
Assertion
Ref Expression
marypha2lem4  |-  ( ( F  Fn  A  /\  X  C_  A )  -> 
( T " X
)  =  U. ( F " X ) )
Distinct variable groups:    x, A    x, F    x, X
Allowed substitution hint:    T( x)

Proof of Theorem marypha2lem4
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 marypha2lem.t . . . . . 6  |-  T  = 
U_ x  e.  A  ( { x }  X.  ( F `  x ) )
21marypha2lem2 7369 . . . . 5  |-  T  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  ( F `  x
) ) }
32imaeq1i 5133 . . . 4  |-  ( T
" X )  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) }
" X )
4 df-ima 4824 . . . 4  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x
) ) } " X )  =  ran  ( { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  ( F `  x
) ) }  |`  X )
53, 4eqtri 2400 . . 3  |-  ( T
" X )  =  ran  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) }  |`  X )
6 resopab2 5123 . . . . . 6  |-  ( X 
C_  A  ->  ( { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  ( F `  x
) ) }  |`  X )  =  { <. x ,  y >.  |  ( x  e.  X  /\  y  e.  ( F `  x ) ) } )
76adantl 453 . . . . 5  |-  ( ( F  Fn  A  /\  X  C_  A )  -> 
( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) }  |`  X )  =  { <. x ,  y >.  |  ( x  e.  X  /\  y  e.  ( F `  x
) ) } )
87rneqd 5030 . . . 4  |-  ( ( F  Fn  A  /\  X  C_  A )  ->  ran  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) }  |`  X )  =  ran  {
<. x ,  y >.  |  ( x  e.  X  /\  y  e.  ( F `  x
) ) } )
9 rnopab 5048 . . . . 5  |-  ran  { <. x ,  y >.  |  ( x  e.  X  /\  y  e.  ( F `  x
) ) }  =  { y  |  E. x ( x  e.  X  /\  y  e.  ( F `  x
) ) }
10 df-rex 2648 . . . . . . . . 9  |-  ( E. x  e.  X  y  e.  ( F `  x )  <->  E. x
( x  e.  X  /\  y  e.  ( F `  x )
) )
1110bicomi 194 . . . . . . . 8  |-  ( E. x ( x  e.  X  /\  y  e.  ( F `  x
) )  <->  E. x  e.  X  y  e.  ( F `  x ) )
1211abbii 2492 . . . . . . 7  |-  { y  |  E. x ( x  e.  X  /\  y  e.  ( F `  x ) ) }  =  { y  |  E. x  e.  X  y  e.  ( F `  x ) }
13 df-iun 4030 . . . . . . 7  |-  U_ x  e.  X  ( F `  x )  =  {
y  |  E. x  e.  X  y  e.  ( F `  x ) }
1412, 13eqtr4i 2403 . . . . . 6  |-  { y  |  E. x ( x  e.  X  /\  y  e.  ( F `  x ) ) }  =  U_ x  e.  X  ( F `  x )
1514a1i 11 . . . . 5  |-  ( ( F  Fn  A  /\  X  C_  A )  ->  { y  |  E. x ( x  e.  X  /\  y  e.  ( F `  x
) ) }  =  U_ x  e.  X  ( F `  x ) )
169, 15syl5eq 2424 . . . 4  |-  ( ( F  Fn  A  /\  X  C_  A )  ->  ran  { <. x ,  y
>.  |  ( x  e.  X  /\  y  e.  ( F `  x
) ) }  =  U_ x  e.  X  ( F `  x ) )
178, 16eqtrd 2412 . . 3  |-  ( ( F  Fn  A  /\  X  C_  A )  ->  ran  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) }  |`  X )  =  U_ x  e.  X  ( F `  x )
)
185, 17syl5eq 2424 . 2  |-  ( ( F  Fn  A  /\  X  C_  A )  -> 
( T " X
)  =  U_ x  e.  X  ( F `  x ) )
19 fnfun 5475 . . . 4  |-  ( F  Fn  A  ->  Fun  F )
2019adantr 452 . . 3  |-  ( ( F  Fn  A  /\  X  C_  A )  ->  Fun  F )
21 funiunfv 5927 . . 3  |-  ( Fun 
F  ->  U_ x  e.  X  ( F `  x )  =  U. ( F " X ) )
2220, 21syl 16 . 2  |-  ( ( F  Fn  A  /\  X  C_  A )  ->  U_ x  e.  X  ( F `  x )  =  U. ( F
" X ) )
2318, 22eqtrd 2412 1  |-  ( ( F  Fn  A  /\  X  C_  A )  -> 
( T " X
)  =  U. ( F " X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717   {cab 2366   E.wrex 2643    C_ wss 3256   {csn 3750   U.cuni 3950   U_ciun 4028   {copab 4199    X. cxp 4809   ran crn 4812    |` cres 4813   "cima 4814   Fun wfun 5381    Fn wfn 5382   ` cfv 5387
This theorem is referenced by:  marypha2  7372
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-sbc 3098  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-fv 5395
  Copyright terms: Public domain W3C validator