Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  matlmod Unicode version

Theorem matlmod 27582
Description: The matrix ring is a linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015.)
Hypothesis
Ref Expression
matassa.a  |-  A  =  ( N Mat  R )
Assertion
Ref Expression
matlmod  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  ->  A  e.  LMod )

Proof of Theorem matlmod
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpexg 4816 . . . 4  |-  ( ( N  e.  Fin  /\  N  e.  Fin )  ->  ( N  X.  N
)  e.  _V )
21anidms 626 . . 3  |-  ( N  e.  Fin  ->  ( N  X.  N )  e. 
_V )
3 eqid 2296 . . . . 5  |-  ( R freeLMod  ( N  X.  N
) )  =  ( R freeLMod  ( N  X.  N ) )
43frlmlmod 27320 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  X.  N )  e. 
_V )  ->  ( R freeLMod  ( N  X.  N
) )  e.  LMod )
54ancoms 439 . . 3  |-  ( ( ( N  X.  N
)  e.  _V  /\  R  e.  Ring )  -> 
( R freeLMod  ( N  X.  N ) )  e. 
LMod )
62, 5sylan 457 . 2  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( R freeLMod  ( N  X.  N ) )  e. 
LMod )
7 eqidd 2297 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( Base `  ( R freeLMod  ( N  X.  N ) ) )  =  (
Base `  ( R freeLMod  ( N  X.  N ) ) ) )
8 matassa.a . . . 4  |-  A  =  ( N Mat  R )
98, 3matbas 27571 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( Base `  ( R freeLMod  ( N  X.  N ) ) )  =  (
Base `  A )
)
108, 3matplusg 27572 . . . 4  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( +g  `  ( R freeLMod  ( N  X.  N
) ) )  =  ( +g  `  A
) )
1110proplem3 13609 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( x  e.  (
Base `  ( R freeLMod  ( N  X.  N ) ) )  /\  y  e.  ( Base `  ( R freeLMod  ( N  X.  N
) ) ) ) )  ->  ( x
( +g  `  ( R freeLMod  ( N  X.  N
) ) ) y )  =  ( x ( +g  `  A
) y ) )
12 eqidd 2297 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
(Scalar `  ( R freeLMod  ( N  X.  N ) ) )  =  (Scalar `  ( R freeLMod  ( N  X.  N ) ) ) )
138, 3matsca 27573 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
(Scalar `  ( R freeLMod  ( N  X.  N ) ) )  =  (Scalar `  A ) )
14 eqid 2296 . . 3  |-  ( Base `  (Scalar `  ( R freeLMod  ( N  X.  N ) ) ) )  =  ( Base `  (Scalar `  ( R freeLMod  ( N  X.  N ) ) ) )
158, 3matvsca 27574 . . . 4  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( .s `  ( R freeLMod  ( N  X.  N
) ) )  =  ( .s `  A
) )
1615proplem3 13609 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( x  e.  (
Base `  (Scalar `  ( R freeLMod  ( N  X.  N
) ) ) )  /\  y  e.  (
Base `  ( R freeLMod  ( N  X.  N ) ) ) ) )  ->  ( x ( .s `  ( R freeLMod  ( N  X.  N
) ) ) y )  =  ( x ( .s `  A
) y ) )
177, 9, 11, 12, 13, 14, 16lmodpropd 15704 . 2  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( ( R freeLMod  ( N  X.  N ) )  e.  LMod  <->  A  e.  LMod ) )
186, 17mpbid 201 1  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  ->  A  e.  LMod )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801    X. cxp 4703   ` cfv 5271  (class class class)co 5874   Fincfn 6879   Basecbs 13164   +g cplusg 13224  Scalarcsca 13227   .scvsca 13228   Ringcrg 15353   LModclmod 15643   freeLMod cfrlm 27315   Mat cmat 27543
This theorem is referenced by:  matrng  27583  matassa  27584
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-ot 3663  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-fz 10799  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-prds 13364  df-0g 13420  df-mnd 14383  df-grp 14505  df-minusg 14506  df-sbg 14507  df-subg 14634  df-mgp 15342  df-rng 15356  df-ur 15358  df-subrg 15559  df-lmod 15645  df-lss 15706  df-sra 15941  df-rgmod 15942  df-dsmm 27301  df-frlm 27317  df-mat 27545
  Copyright terms: Public domain W3C validator