MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  maxlp Unicode version

Theorem maxlp 16894
Description: A point is a limit point of the whole space iff the singleton of the point is not open. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1  |-  X  = 
U. J
Assertion
Ref Expression
maxlp  |-  ( J  e.  Top  ->  ( P  e.  ( ( limPt `  J ) `  X )  <->  ( P  e.  X  /\  -.  { P }  e.  J
) ) )

Proof of Theorem maxlp
StepHypRef Expression
1 ssid 3210 . . . . 5  |-  X  C_  X
2 lpfval.1 . . . . . 6  |-  X  = 
U. J
32lpss 16890 . . . . 5  |-  ( ( J  e.  Top  /\  X  C_  X )  -> 
( ( limPt `  J
) `  X )  C_  X )
41, 3mpan2 652 . . . 4  |-  ( J  e.  Top  ->  (
( limPt `  J ) `  X )  C_  X
)
54sseld 3192 . . 3  |-  ( J  e.  Top  ->  ( P  e.  ( ( limPt `  J ) `  X )  ->  P  e.  X ) )
65pm4.71rd 616 . 2  |-  ( J  e.  Top  ->  ( P  e.  ( ( limPt `  J ) `  X )  <->  ( P  e.  X  /\  P  e.  ( ( limPt `  J
) `  X )
) ) )
7 simpl 443 . . . . 5  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  J  e.  Top )
82islp 16888 . . . . 5  |-  ( ( J  e.  Top  /\  X  C_  X )  -> 
( P  e.  ( ( limPt `  J ) `  X )  <->  P  e.  ( ( cls `  J
) `  ( X  \  { P } ) ) ) )
97, 1, 8sylancl 643 . . . 4  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( P  e.  ( ( limPt `  J ) `  X )  <->  P  e.  ( ( cls `  J
) `  ( X  \  { P } ) ) ) )
10 snssi 3775 . . . . . 6  |-  ( P  e.  X  ->  { P }  C_  X )
112clsdif 16806 . . . . . 6  |-  ( ( J  e.  Top  /\  { P }  C_  X
)  ->  ( ( cls `  J ) `  ( X  \  { P } ) )  =  ( X  \  (
( int `  J
) `  { P } ) ) )
1210, 11sylan2 460 . . . . 5  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( ( cls `  J
) `  ( X  \  { P } ) )  =  ( X 
\  ( ( int `  J ) `  { P } ) ) )
1312eleq2d 2363 . . . 4  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( P  e.  ( ( cls `  J
) `  ( X  \  { P } ) )  <->  P  e.  ( X  \  ( ( int `  J ) `  { P } ) ) ) )
14 eldif 3175 . . . . . . 7  |-  ( P  e.  ( X  \ 
( ( int `  J
) `  { P } ) )  <->  ( P  e.  X  /\  -.  P  e.  ( ( int `  J
) `  { P } ) ) )
1514baib 871 . . . . . 6  |-  ( P  e.  X  ->  ( P  e.  ( X  \  ( ( int `  J
) `  { P } ) )  <->  -.  P  e.  ( ( int `  J
) `  { P } ) ) )
1615adantl 452 . . . . 5  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( P  e.  ( X  \  ( ( int `  J ) `
 { P }
) )  <->  -.  P  e.  ( ( int `  J
) `  { P } ) ) )
17 snssi 3775 . . . . . . . . . 10  |-  ( P  e.  ( ( int `  J ) `  { P } )  ->  { P }  C_  ( ( int `  J ) `  { P } ) )
1817adantl 452 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  P  e.  X )  /\  P  e.  ( ( int `  J
) `  { P } ) )  ->  { P }  C_  (
( int `  J
) `  { P } ) )
192ntrss2 16810 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  { P }  C_  X
)  ->  ( ( int `  J ) `  { P } )  C_  { P } )
2010, 19sylan2 460 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( ( int `  J
) `  { P } )  C_  { P } )
2120adantr 451 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  P  e.  X )  /\  P  e.  ( ( int `  J
) `  { P } ) )  -> 
( ( int `  J
) `  { P } )  C_  { P } )
2218, 21eqssd 3209 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  P  e.  X )  /\  P  e.  ( ( int `  J
) `  { P } ) )  ->  { P }  =  ( ( int `  J
) `  { P } ) )
232ntropn 16802 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  { P }  C_  X
)  ->  ( ( int `  J ) `  { P } )  e.  J )
2410, 23sylan2 460 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( ( int `  J
) `  { P } )  e.  J
)
2524adantr 451 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  P  e.  X )  /\  P  e.  ( ( int `  J
) `  { P } ) )  -> 
( ( int `  J
) `  { P } )  e.  J
)
2622, 25eqeltrd 2370 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  P  e.  X )  /\  P  e.  ( ( int `  J
) `  { P } ) )  ->  { P }  e.  J
)
27 snidg 3678 . . . . . . . . 9  |-  ( P  e.  X  ->  P  e.  { P } )
2827ad2antlr 707 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  P  e.  X )  /\  { P }  e.  J )  ->  P  e.  { P } )
29 isopn3i 16835 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  { P }  e.  J
)  ->  ( ( int `  J ) `  { P } )  =  { P } )
3029adantlr 695 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  P  e.  X )  /\  { P }  e.  J )  ->  (
( int `  J
) `  { P } )  =  { P } )
3128, 30eleqtrrd 2373 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  P  e.  X )  /\  { P }  e.  J )  ->  P  e.  ( ( int `  J
) `  { P } ) )
3226, 31impbida 805 . . . . . 6  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( P  e.  ( ( int `  J
) `  { P } )  <->  { P }  e.  J )
)
3332notbid 285 . . . . 5  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( -.  P  e.  ( ( int `  J
) `  { P } )  <->  -.  { P }  e.  J )
)
3416, 33bitrd 244 . . . 4  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( P  e.  ( X  \  ( ( int `  J ) `
 { P }
) )  <->  -.  { P }  e.  J )
)
359, 13, 343bitrd 270 . . 3  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( P  e.  ( ( limPt `  J ) `  X )  <->  -.  { P }  e.  J )
)
3635pm5.32da 622 . 2  |-  ( J  e.  Top  ->  (
( P  e.  X  /\  P  e.  (
( limPt `  J ) `  X ) )  <->  ( P  e.  X  /\  -.  { P }  e.  J
) ) )
376, 36bitrd 244 1  |-  ( J  e.  Top  ->  ( P  e.  ( ( limPt `  J ) `  X )  <->  ( P  e.  X  /\  -.  { P }  e.  J
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    \ cdif 3162    C_ wss 3165   {csn 3653   U.cuni 3843   ` cfv 5271   Topctop 16647   intcnt 16770   clsccl 16771   limPtclp 16882
This theorem is referenced by:  isperf3  16900
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-top 16652  df-cld 16772  df-ntr 16773  df-cls 16774  df-lp 16884
  Copyright terms: Public domain W3C validator