MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfeqalem Structured version   Unicode version

Theorem mbfeqalem 19563
Description: Lemma for mbfeqa 19564. (Contributed by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
mbfeqa.1  |-  ( ph  ->  A  C_  RR )
mbfeqa.2  |-  ( ph  ->  ( vol * `  A )  =  0 )
mbfeqa.3  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  =  D )
mbfeqalem.4  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  RR )
mbfeqalem.5  |-  ( (
ph  /\  x  e.  B )  ->  D  e.  RR )
Assertion
Ref Expression
mbfeqalem  |-  ( ph  ->  ( ( x  e.  B  |->  C )  e. MblFn  <->  ( x  e.  B  |->  D )  e. MblFn ) )
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hints:    C( x)    D( x)

Proof of Theorem mbfeqalem
Dummy variables  z 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inundif 3730 . . . . 5  |-  ( ( ( `' ( x  e.  B  |->  D )
" y )  i^i  ( `' ( x  e.  B  |->  C )
" y ) )  u.  ( ( `' ( x  e.  B  |->  D ) " y
)  \  ( `' ( x  e.  B  |->  C ) " y
) ) )  =  ( `' ( x  e.  B  |->  D )
" y )
2 incom 3519 . . . . . . . 8  |-  ( ( `' ( x  e.  B  |->  D ) "
y )  i^i  ( `' ( x  e.  B  |->  C ) "
y ) )  =  ( ( `' ( x  e.  B  |->  C ) " y )  i^i  ( `' ( x  e.  B  |->  D ) " y ) )
3 dfin4 3566 . . . . . . . 8  |-  ( ( `' ( x  e.  B  |->  C ) "
y )  i^i  ( `' ( x  e.  B  |->  D ) "
y ) )  =  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( ( `' ( x  e.  B  |->  C ) " y
)  \  ( `' ( x  e.  B  |->  D ) " y
) ) )
42, 3eqtri 2462 . . . . . . 7  |-  ( ( `' ( x  e.  B  |->  D ) "
y )  i^i  ( `' ( x  e.  B  |->  C ) "
y ) )  =  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( ( `' ( x  e.  B  |->  C ) " y
)  \  ( `' ( x  e.  B  |->  D ) " y
) ) )
5 id 21 . . . . . . . 8  |-  ( ( `' ( x  e.  B  |->  C ) "
y )  e.  dom  vol 
->  ( `' ( x  e.  B  |->  C )
" y )  e. 
dom  vol )
6 symdif2 3592 . . . . . . . . . . . 12  |-  ( ( ( `' ( x  e.  B  |->  C )
" y )  \ 
( `' ( x  e.  B  |->  D )
" y ) )  u.  ( ( `' ( x  e.  B  |->  D ) " y
)  \  ( `' ( x  e.  B  |->  C ) " y
) ) )  =  { z  |  -.  ( z  e.  ( `' ( x  e.  B  |->  C ) "
y )  <->  z  e.  ( `' ( x  e.  B  |->  D ) "
y ) ) }
7 eldif 3316 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ( B  \  A )  <->  ( z  e.  B  /\  -.  z  e.  A ) )
8 mbfeqa.3 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  =  D )
9 eldifi 3455 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  e.  ( B  \  A )  ->  x  e.  B )
109adantl 454 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  x  e.  B )
11 mbfeqalem.4 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  RR )
129, 11sylan2 462 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  e.  RR )
13 eqid 2442 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  e.  B  |->  C )  =  ( x  e.  B  |->  C )
1413fvmpt2 5841 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( x  e.  B  /\  C  e.  RR )  ->  ( ( x  e.  B  |->  C ) `  x )  =  C )
1510, 12, 14syl2anc 644 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  ( (
x  e.  B  |->  C ) `  x )  =  C )
16 mbfeqalem.5 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  x  e.  B )  ->  D  e.  RR )
179, 16sylan2 462 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  D  e.  RR )
18 eqid 2442 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  e.  B  |->  D )  =  ( x  e.  B  |->  D )
1918fvmpt2 5841 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( x  e.  B  /\  D  e.  RR )  ->  ( ( x  e.  B  |->  D ) `  x )  =  D )
2010, 17, 19syl2anc 644 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  ( (
x  e.  B  |->  D ) `  x )  =  D )
218, 15, 203eqtr4d 2484 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  ( (
x  e.  B  |->  C ) `  x )  =  ( ( x  e.  B  |->  D ) `
 x ) )
2221ralrimiva 2795 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  A. x  e.  ( B  \  A ) ( ( x  e.  B  |->  C ) `  x )  =  ( ( x  e.  B  |->  D ) `  x
) )
23 nfv 1630 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ z ( ( x  e.  B  |->  C ) `  x )  =  ( ( x  e.  B  |->  D ) `  x
)
24 nffvmpt1 5765 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  F/_ x
( ( x  e.  B  |->  C ) `  z )
25 nffvmpt1 5765 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  F/_ x
( ( x  e.  B  |->  D ) `  z )
2624, 25nfeq 2585 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ x
( ( x  e.  B  |->  C ) `  z )  =  ( ( x  e.  B  |->  D ) `  z
)
27 fveq2 5757 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  z  ->  (
( x  e.  B  |->  C ) `  x
)  =  ( ( x  e.  B  |->  C ) `  z ) )
28 fveq2 5757 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  z  ->  (
( x  e.  B  |->  D ) `  x
)  =  ( ( x  e.  B  |->  D ) `  z ) )
2927, 28eqeq12d 2456 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  z  ->  (
( ( x  e.  B  |->  C ) `  x )  =  ( ( x  e.  B  |->  D ) `  x
)  <->  ( ( x  e.  B  |->  C ) `
 z )  =  ( ( x  e.  B  |->  D ) `  z ) ) )
3023, 26, 29cbvral 2934 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A. x  e.  ( B  \  A ) ( ( x  e.  B  |->  C ) `  x )  =  ( ( x  e.  B  |->  D ) `
 x )  <->  A. z  e.  ( B  \  A
) ( ( x  e.  B  |->  C ) `
 z )  =  ( ( x  e.  B  |->  D ) `  z ) )
3122, 30sylib 190 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  A. z  e.  ( B  \  A ) ( ( x  e.  B  |->  C ) `  z )  =  ( ( x  e.  B  |->  D ) `  z
) )
3231r19.21bi 2810 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  z  e.  ( B  \  A ) )  ->  ( (
x  e.  B  |->  C ) `  z )  =  ( ( x  e.  B  |->  D ) `
 z ) )
3332eleq1d 2508 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  z  e.  ( B  \  A ) )  ->  ( (
( x  e.  B  |->  C ) `  z
)  e.  y  <->  ( (
x  e.  B  |->  D ) `  z )  e.  y ) )
347, 33sylan2br 464 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( z  e.  B  /\  -.  z  e.  A ) )  -> 
( ( ( x  e.  B  |->  C ) `
 z )  e.  y  <->  ( ( x  e.  B  |->  D ) `
 z )  e.  y ) )
3534anass1rs 784 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  -.  z  e.  A )  /\  z  e.  B
)  ->  ( (
( x  e.  B  |->  C ) `  z
)  e.  y  <->  ( (
x  e.  B  |->  D ) `  z )  e.  y ) )
3635pm5.32da 624 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  -.  z  e.  A )  ->  (
( z  e.  B  /\  ( ( x  e.  B  |->  C ) `  z )  e.  y )  <->  ( z  e.  B  /\  ( ( x  e.  B  |->  D ) `  z )  e.  y ) ) )
3711, 13fmptd 5922 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( x  e.  B  |->  C ) : B --> RR )
38 ffn 5620 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  B  |->  C ) : B --> RR  ->  ( x  e.  B  |->  C )  Fn  B )
3937, 38syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( x  e.  B  |->  C )  Fn  B
)
4039adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  -.  z  e.  A )  ->  (
x  e.  B  |->  C )  Fn  B )
41 elpreima 5879 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  B  |->  C )  Fn  B  -> 
( z  e.  ( `' ( x  e.  B  |->  C ) "
y )  <->  ( z  e.  B  /\  (
( x  e.  B  |->  C ) `  z
)  e.  y ) ) )
4240, 41syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  -.  z  e.  A )  ->  (
z  e.  ( `' ( x  e.  B  |->  C ) " y
)  <->  ( z  e.  B  /\  ( ( x  e.  B  |->  C ) `  z )  e.  y ) ) )
4316, 18fmptd 5922 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( x  e.  B  |->  D ) : B --> RR )
44 ffn 5620 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  B  |->  D ) : B --> RR  ->  ( x  e.  B  |->  D )  Fn  B )
4543, 44syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( x  e.  B  |->  D )  Fn  B
)
4645adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  -.  z  e.  A )  ->  (
x  e.  B  |->  D )  Fn  B )
47 elpreima 5879 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  B  |->  D )  Fn  B  -> 
( z  e.  ( `' ( x  e.  B  |->  D ) "
y )  <->  ( z  e.  B  /\  (
( x  e.  B  |->  D ) `  z
)  e.  y ) ) )
4846, 47syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  -.  z  e.  A )  ->  (
z  e.  ( `' ( x  e.  B  |->  D ) " y
)  <->  ( z  e.  B  /\  ( ( x  e.  B  |->  D ) `  z )  e.  y ) ) )
4936, 42, 483bitr4d 278 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  -.  z  e.  A )  ->  (
z  e.  ( `' ( x  e.  B  |->  C ) " y
)  <->  z  e.  ( `' ( x  e.  B  |->  D ) "
y ) ) )
5049ex 425 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( -.  z  e.  A  ->  ( z  e.  ( `' ( x  e.  B  |->  C )
" y )  <->  z  e.  ( `' ( x  e.  B  |->  D ) "
y ) ) ) )
5150con1d 119 . . . . . . . . . . . . 13  |-  ( ph  ->  ( -.  ( z  e.  ( `' ( x  e.  B  |->  C ) " y )  <-> 
z  e.  ( `' ( x  e.  B  |->  D ) " y
) )  ->  z  e.  A ) )
5251abssdv 3403 . . . . . . . . . . . 12  |-  ( ph  ->  { z  |  -.  ( z  e.  ( `' ( x  e.  B  |->  C ) "
y )  <->  z  e.  ( `' ( x  e.  B  |->  D ) "
y ) ) } 
C_  A )
536, 52syl5eqss 3378 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( `' ( x  e.  B  |->  C ) " y
)  \  ( `' ( x  e.  B  |->  D ) " y
) )  u.  (
( `' ( x  e.  B  |->  D )
" y )  \ 
( `' ( x  e.  B  |->  C )
" y ) ) )  C_  A )
5453unssad 3510 . . . . . . . . . 10  |-  ( ph  ->  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) )  C_  A )
55 mbfeqa.1 . . . . . . . . . 10  |-  ( ph  ->  A  C_  RR )
5654, 55sstrd 3344 . . . . . . . . 9  |-  ( ph  ->  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) )  C_  RR )
57 mbfeqa.2 . . . . . . . . . 10  |-  ( ph  ->  ( vol * `  A )  =  0 )
58 ovolssnul 19414 . . . . . . . . . 10  |-  ( ( ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) )  C_  A  /\  A  C_  RR  /\  ( vol * `  A )  =  0 )  -> 
( vol * `  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) ) )  =  0 )
5954, 55, 57, 58syl3anc 1185 . . . . . . . . 9  |-  ( ph  ->  ( vol * `  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) ) )  =  0 )
60 nulmbl 19461 . . . . . . . . 9  |-  ( ( ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) )  C_  RR  /\  ( vol * `  ( ( `' ( x  e.  B  |->  C ) "
y )  \  ( `' ( x  e.  B  |->  D ) "
y ) ) )  =  0 )  -> 
( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) )  e.  dom  vol )
6156, 59, 60syl2anc 644 . . . . . . . 8  |-  ( ph  ->  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) )  e.  dom  vol )
62 difmbl 19468 . . . . . . . 8  |-  ( ( ( `' ( x  e.  B  |->  C )
" y )  e. 
dom  vol  /\  ( ( `' ( x  e.  B  |->  C ) "
y )  \  ( `' ( x  e.  B  |->  D ) "
y ) )  e. 
dom  vol )  ->  (
( `' ( x  e.  B  |->  C )
" y )  \ 
( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) ) )  e.  dom  vol )
635, 61, 62syl2anr 466 . . . . . . 7  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  C ) " y
)  e.  dom  vol )  ->  ( ( `' ( x  e.  B  |->  C ) " y
)  \  ( ( `' ( x  e.  B  |->  C ) "
y )  \  ( `' ( x  e.  B  |->  D ) "
y ) ) )  e.  dom  vol )
644, 63syl5eqel 2526 . . . . . 6  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  C ) " y
)  e.  dom  vol )  ->  ( ( `' ( x  e.  B  |->  D ) " y
)  i^i  ( `' ( x  e.  B  |->  C ) " y
) )  e.  dom  vol )
6553unssbd 3511 . . . . . . . . 9  |-  ( ph  ->  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) )  C_  A )
6665, 55sstrd 3344 . . . . . . . 8  |-  ( ph  ->  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) )  C_  RR )
67 ovolssnul 19414 . . . . . . . . 9  |-  ( ( ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) )  C_  A  /\  A  C_  RR  /\  ( vol * `  A )  =  0 )  -> 
( vol * `  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) ) )  =  0 )
6865, 55, 57, 67syl3anc 1185 . . . . . . . 8  |-  ( ph  ->  ( vol * `  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) ) )  =  0 )
69 nulmbl 19461 . . . . . . . 8  |-  ( ( ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) )  C_  RR  /\  ( vol * `  ( ( `' ( x  e.  B  |->  D ) "
y )  \  ( `' ( x  e.  B  |->  C ) "
y ) ) )  =  0 )  -> 
( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) )  e.  dom  vol )
7066, 68, 69syl2anc 644 . . . . . . 7  |-  ( ph  ->  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) )  e.  dom  vol )
7170adantr 453 . . . . . 6  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  C ) " y
)  e.  dom  vol )  ->  ( ( `' ( x  e.  B  |->  D ) " y
)  \  ( `' ( x  e.  B  |->  C ) " y
) )  e.  dom  vol )
72 unmbl 19463 . . . . . 6  |-  ( ( ( ( `' ( x  e.  B  |->  D ) " y )  i^i  ( `' ( x  e.  B  |->  C ) " y ) )  e.  dom  vol  /\  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) )  e.  dom  vol )  ->  ( ( ( `' ( x  e.  B  |->  D ) "
y )  i^i  ( `' ( x  e.  B  |->  C ) "
y ) )  u.  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) ) )  e.  dom  vol )
7364, 71, 72syl2anc 644 . . . . 5  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  C ) " y
)  e.  dom  vol )  ->  ( ( ( `' ( x  e.  B  |->  D ) "
y )  i^i  ( `' ( x  e.  B  |->  C ) "
y ) )  u.  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) ) )  e.  dom  vol )
741, 73syl5eqelr 2527 . . . 4  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  C ) " y
)  e.  dom  vol )  ->  ( `' ( x  e.  B  |->  D ) " y )  e.  dom  vol )
75 inundif 3730 . . . . 5  |-  ( ( ( `' ( x  e.  B  |->  C )
" y )  i^i  ( `' ( x  e.  B  |->  D )
" y ) )  u.  ( ( `' ( x  e.  B  |->  C ) " y
)  \  ( `' ( x  e.  B  |->  D ) " y
) ) )  =  ( `' ( x  e.  B  |->  C )
" y )
76 incom 3519 . . . . . . . 8  |-  ( ( `' ( x  e.  B  |->  C ) "
y )  i^i  ( `' ( x  e.  B  |->  D ) "
y ) )  =  ( ( `' ( x  e.  B  |->  D ) " y )  i^i  ( `' ( x  e.  B  |->  C ) " y ) )
77 dfin4 3566 . . . . . . . 8  |-  ( ( `' ( x  e.  B  |->  D ) "
y )  i^i  ( `' ( x  e.  B  |->  C ) "
y ) )  =  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( ( `' ( x  e.  B  |->  D ) " y
)  \  ( `' ( x  e.  B  |->  C ) " y
) ) )
7876, 77eqtri 2462 . . . . . . 7  |-  ( ( `' ( x  e.  B  |->  C ) "
y )  i^i  ( `' ( x  e.  B  |->  D ) "
y ) )  =  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( ( `' ( x  e.  B  |->  D ) " y
)  \  ( `' ( x  e.  B  |->  C ) " y
) ) )
79 id 21 . . . . . . . 8  |-  ( ( `' ( x  e.  B  |->  D ) "
y )  e.  dom  vol 
->  ( `' ( x  e.  B  |->  D )
" y )  e. 
dom  vol )
80 difmbl 19468 . . . . . . . 8  |-  ( ( ( `' ( x  e.  B  |->  D )
" y )  e. 
dom  vol  /\  ( ( `' ( x  e.  B  |->  D ) "
y )  \  ( `' ( x  e.  B  |->  C ) "
y ) )  e. 
dom  vol )  ->  (
( `' ( x  e.  B  |->  D )
" y )  \ 
( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) ) )  e.  dom  vol )
8179, 70, 80syl2anr 466 . . . . . . 7  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol )  ->  ( ( `' ( x  e.  B  |->  D ) " y
)  \  ( ( `' ( x  e.  B  |->  D ) "
y )  \  ( `' ( x  e.  B  |->  C ) "
y ) ) )  e.  dom  vol )
8278, 81syl5eqel 2526 . . . . . 6  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol )  ->  ( ( `' ( x  e.  B  |->  C ) " y
)  i^i  ( `' ( x  e.  B  |->  D ) " y
) )  e.  dom  vol )
8361adantr 453 . . . . . 6  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol )  ->  ( ( `' ( x  e.  B  |->  C ) " y
)  \  ( `' ( x  e.  B  |->  D ) " y
) )  e.  dom  vol )
84 unmbl 19463 . . . . . 6  |-  ( ( ( ( `' ( x  e.  B  |->  C ) " y )  i^i  ( `' ( x  e.  B  |->  D ) " y ) )  e.  dom  vol  /\  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) )  e.  dom  vol )  ->  ( ( ( `' ( x  e.  B  |->  C ) "
y )  i^i  ( `' ( x  e.  B  |->  D ) "
y ) )  u.  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) ) )  e.  dom  vol )
8582, 83, 84syl2anc 644 . . . . 5  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol )  ->  ( ( ( `' ( x  e.  B  |->  C ) "
y )  i^i  ( `' ( x  e.  B  |->  D ) "
y ) )  u.  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) ) )  e.  dom  vol )
8675, 85syl5eqelr 2527 . . . 4  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol )  ->  ( `' ( x  e.  B  |->  C ) " y )  e.  dom  vol )
8774, 86impbida 807 . . 3  |-  ( ph  ->  ( ( `' ( x  e.  B  |->  C ) " y )  e.  dom  vol  <->  ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol ) )
8887ralbidv 2731 . 2  |-  ( ph  ->  ( A. y  e. 
ran  (,) ( `' ( x  e.  B  |->  C ) " y )  e.  dom  vol  <->  A. y  e.  ran  (,) ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol ) )
89 ismbf 19551 . . 3  |-  ( ( x  e.  B  |->  C ) : B --> RR  ->  ( ( x  e.  B  |->  C )  e. MblFn  <->  A. y  e.  ran  (,) ( `' ( x  e.  B  |->  C ) " y
)  e.  dom  vol ) )
9037, 89syl 16 . 2  |-  ( ph  ->  ( ( x  e.  B  |->  C )  e. MblFn  <->  A. y  e.  ran  (,) ( `' ( x  e.  B  |->  C ) "
y )  e.  dom  vol ) )
91 ismbf 19551 . . 3  |-  ( ( x  e.  B  |->  D ) : B --> RR  ->  ( ( x  e.  B  |->  D )  e. MblFn  <->  A. y  e.  ran  (,) ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol ) )
9243, 91syl 16 . 2  |-  ( ph  ->  ( ( x  e.  B  |->  D )  e. MblFn  <->  A. y  e.  ran  (,) ( `' ( x  e.  B  |->  D ) "
y )  e.  dom  vol ) )
9388, 90, 923bitr4d 278 1  |-  ( ph  ->  ( ( x  e.  B  |->  C )  e. MblFn  <->  ( x  e.  B  |->  D )  e. MblFn ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1727   {cab 2428   A.wral 2711    \ cdif 3303    u. cun 3304    i^i cin 3305    C_ wss 3306    e. cmpt 4291   `'ccnv 4906   dom cdm 4907   ran crn 4908   "cima 4910    Fn wfn 5478   -->wf 5479   ` cfv 5483   RRcr 9020   0cc0 9021   (,)cioo 10947   vol *covol 19390   volcvol 19391  MblFncmbf 19537
This theorem is referenced by:  mbfeqa  19564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-inf2 7625  ax-cnex 9077  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097  ax-pre-mulgt0 9098  ax-pre-sup 9099
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-int 4075  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-se 4571  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-isom 5492  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-of 6334  df-1st 6378  df-2nd 6379  df-riota 6578  df-recs 6662  df-rdg 6697  df-1o 6753  df-2o 6754  df-oadd 6757  df-er 6934  df-map 7049  df-pm 7050  df-en 7139  df-dom 7140  df-sdom 7141  df-fin 7142  df-sup 7475  df-oi 7508  df-card 7857  df-cda 8079  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-sub 9324  df-neg 9325  df-div 9709  df-nn 10032  df-2 10089  df-3 10090  df-n0 10253  df-z 10314  df-uz 10520  df-q 10606  df-rp 10644  df-xadd 10742  df-ioo 10951  df-ico 10953  df-icc 10954  df-fz 11075  df-fzo 11167  df-fl 11233  df-seq 11355  df-exp 11414  df-hash 11650  df-cj 11935  df-re 11936  df-im 11937  df-sqr 12071  df-abs 12072  df-clim 12313  df-sum 12511  df-xmet 16726  df-met 16727  df-ovol 19392  df-vol 19393  df-mbf 19542
  Copyright terms: Public domain W3C validator