MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfeqalem Unicode version

Theorem mbfeqalem 19394
Description: Lemma for mbfeqa 19395. (Contributed by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
mbfeqa.1  |-  ( ph  ->  A  C_  RR )
mbfeqa.2  |-  ( ph  ->  ( vol * `  A )  =  0 )
mbfeqa.3  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  =  D )
mbfeqalem.4  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  RR )
mbfeqalem.5  |-  ( (
ph  /\  x  e.  B )  ->  D  e.  RR )
Assertion
Ref Expression
mbfeqalem  |-  ( ph  ->  ( ( x  e.  B  |->  C )  e. MblFn  <->  ( x  e.  B  |->  D )  e. MblFn ) )
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hints:    C( x)    D( x)

Proof of Theorem mbfeqalem
Dummy variables  z 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inundif 3642 . . . . 5  |-  ( ( ( `' ( x  e.  B  |->  D )
" y )  i^i  ( `' ( x  e.  B  |->  C )
" y ) )  u.  ( ( `' ( x  e.  B  |->  D ) " y
)  \  ( `' ( x  e.  B  |->  C ) " y
) ) )  =  ( `' ( x  e.  B  |->  D )
" y )
2 incom 3469 . . . . . . . 8  |-  ( ( `' ( x  e.  B  |->  D ) "
y )  i^i  ( `' ( x  e.  B  |->  C ) "
y ) )  =  ( ( `' ( x  e.  B  |->  C ) " y )  i^i  ( `' ( x  e.  B  |->  D ) " y ) )
3 dfin4 3517 . . . . . . . 8  |-  ( ( `' ( x  e.  B  |->  C ) "
y )  i^i  ( `' ( x  e.  B  |->  D ) "
y ) )  =  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( ( `' ( x  e.  B  |->  C ) " y
)  \  ( `' ( x  e.  B  |->  D ) " y
) ) )
42, 3eqtri 2400 . . . . . . 7  |-  ( ( `' ( x  e.  B  |->  D ) "
y )  i^i  ( `' ( x  e.  B  |->  C ) "
y ) )  =  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( ( `' ( x  e.  B  |->  C ) " y
)  \  ( `' ( x  e.  B  |->  D ) " y
) ) )
5 id 20 . . . . . . . 8  |-  ( ( `' ( x  e.  B  |->  C ) "
y )  e.  dom  vol 
->  ( `' ( x  e.  B  |->  C )
" y )  e. 
dom  vol )
6 symdif2 3543 . . . . . . . . . . . 12  |-  ( ( ( `' ( x  e.  B  |->  C )
" y )  \ 
( `' ( x  e.  B  |->  D )
" y ) )  u.  ( ( `' ( x  e.  B  |->  D ) " y
)  \  ( `' ( x  e.  B  |->  C ) " y
) ) )  =  { z  |  -.  ( z  e.  ( `' ( x  e.  B  |->  C ) "
y )  <->  z  e.  ( `' ( x  e.  B  |->  D ) "
y ) ) }
7 eldif 3266 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ( B  \  A )  <->  ( z  e.  B  /\  -.  z  e.  A ) )
8 mbfeqa.3 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  =  D )
9 eldifi 3405 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  e.  ( B  \  A )  ->  x  e.  B )
109adantl 453 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  x  e.  B )
11 mbfeqalem.4 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  RR )
129, 11sylan2 461 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  e.  RR )
13 eqid 2380 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  e.  B  |->  C )  =  ( x  e.  B  |->  C )
1413fvmpt2 5744 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( x  e.  B  /\  C  e.  RR )  ->  ( ( x  e.  B  |->  C ) `  x )  =  C )
1510, 12, 14syl2anc 643 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  ( (
x  e.  B  |->  C ) `  x )  =  C )
16 mbfeqalem.5 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  x  e.  B )  ->  D  e.  RR )
179, 16sylan2 461 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  D  e.  RR )
18 eqid 2380 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  e.  B  |->  D )  =  ( x  e.  B  |->  D )
1918fvmpt2 5744 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( x  e.  B  /\  D  e.  RR )  ->  ( ( x  e.  B  |->  D ) `  x )  =  D )
2010, 17, 19syl2anc 643 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  ( (
x  e.  B  |->  D ) `  x )  =  D )
218, 15, 203eqtr4d 2422 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  ( (
x  e.  B  |->  C ) `  x )  =  ( ( x  e.  B  |->  D ) `
 x ) )
2221ralrimiva 2725 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  A. x  e.  ( B  \  A ) ( ( x  e.  B  |->  C ) `  x )  =  ( ( x  e.  B  |->  D ) `  x
) )
23 nfv 1626 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ z ( ( x  e.  B  |->  C ) `  x )  =  ( ( x  e.  B  |->  D ) `  x
)
24 nffvmpt1 5669 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  F/_ x
( ( x  e.  B  |->  C ) `  z )
25 nffvmpt1 5669 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  F/_ x
( ( x  e.  B  |->  D ) `  z )
2624, 25nfeq 2523 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ x
( ( x  e.  B  |->  C ) `  z )  =  ( ( x  e.  B  |->  D ) `  z
)
27 fveq2 5661 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  z  ->  (
( x  e.  B  |->  C ) `  x
)  =  ( ( x  e.  B  |->  C ) `  z ) )
28 fveq2 5661 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  z  ->  (
( x  e.  B  |->  D ) `  x
)  =  ( ( x  e.  B  |->  D ) `  z ) )
2927, 28eqeq12d 2394 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  z  ->  (
( ( x  e.  B  |->  C ) `  x )  =  ( ( x  e.  B  |->  D ) `  x
)  <->  ( ( x  e.  B  |->  C ) `
 z )  =  ( ( x  e.  B  |->  D ) `  z ) ) )
3023, 26, 29cbvral 2864 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A. x  e.  ( B  \  A ) ( ( x  e.  B  |->  C ) `  x )  =  ( ( x  e.  B  |->  D ) `
 x )  <->  A. z  e.  ( B  \  A
) ( ( x  e.  B  |->  C ) `
 z )  =  ( ( x  e.  B  |->  D ) `  z ) )
3122, 30sylib 189 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  A. z  e.  ( B  \  A ) ( ( x  e.  B  |->  C ) `  z )  =  ( ( x  e.  B  |->  D ) `  z
) )
3231r19.21bi 2740 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  z  e.  ( B  \  A ) )  ->  ( (
x  e.  B  |->  C ) `  z )  =  ( ( x  e.  B  |->  D ) `
 z ) )
3332eleq1d 2446 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  z  e.  ( B  \  A ) )  ->  ( (
( x  e.  B  |->  C ) `  z
)  e.  y  <->  ( (
x  e.  B  |->  D ) `  z )  e.  y ) )
347, 33sylan2br 463 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( z  e.  B  /\  -.  z  e.  A ) )  -> 
( ( ( x  e.  B  |->  C ) `
 z )  e.  y  <->  ( ( x  e.  B  |->  D ) `
 z )  e.  y ) )
3534anass1rs 783 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  -.  z  e.  A )  /\  z  e.  B
)  ->  ( (
( x  e.  B  |->  C ) `  z
)  e.  y  <->  ( (
x  e.  B  |->  D ) `  z )  e.  y ) )
3635pm5.32da 623 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  -.  z  e.  A )  ->  (
( z  e.  B  /\  ( ( x  e.  B  |->  C ) `  z )  e.  y )  <->  ( z  e.  B  /\  ( ( x  e.  B  |->  D ) `  z )  e.  y ) ) )
3711, 13fmptd 5825 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( x  e.  B  |->  C ) : B --> RR )
38 ffn 5524 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  B  |->  C ) : B --> RR  ->  ( x  e.  B  |->  C )  Fn  B )
3937, 38syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( x  e.  B  |->  C )  Fn  B
)
4039adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  -.  z  e.  A )  ->  (
x  e.  B  |->  C )  Fn  B )
41 elpreima 5782 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  B  |->  C )  Fn  B  -> 
( z  e.  ( `' ( x  e.  B  |->  C ) "
y )  <->  ( z  e.  B  /\  (
( x  e.  B  |->  C ) `  z
)  e.  y ) ) )
4240, 41syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  -.  z  e.  A )  ->  (
z  e.  ( `' ( x  e.  B  |->  C ) " y
)  <->  ( z  e.  B  /\  ( ( x  e.  B  |->  C ) `  z )  e.  y ) ) )
4316, 18fmptd 5825 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( x  e.  B  |->  D ) : B --> RR )
44 ffn 5524 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  B  |->  D ) : B --> RR  ->  ( x  e.  B  |->  D )  Fn  B )
4543, 44syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( x  e.  B  |->  D )  Fn  B
)
4645adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  -.  z  e.  A )  ->  (
x  e.  B  |->  D )  Fn  B )
47 elpreima 5782 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  B  |->  D )  Fn  B  -> 
( z  e.  ( `' ( x  e.  B  |->  D ) "
y )  <->  ( z  e.  B  /\  (
( x  e.  B  |->  D ) `  z
)  e.  y ) ) )
4846, 47syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  -.  z  e.  A )  ->  (
z  e.  ( `' ( x  e.  B  |->  D ) " y
)  <->  ( z  e.  B  /\  ( ( x  e.  B  |->  D ) `  z )  e.  y ) ) )
4936, 42, 483bitr4d 277 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  -.  z  e.  A )  ->  (
z  e.  ( `' ( x  e.  B  |->  C ) " y
)  <->  z  e.  ( `' ( x  e.  B  |->  D ) "
y ) ) )
5049ex 424 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( -.  z  e.  A  ->  ( z  e.  ( `' ( x  e.  B  |->  C )
" y )  <->  z  e.  ( `' ( x  e.  B  |->  D ) "
y ) ) ) )
5150con1d 118 . . . . . . . . . . . . 13  |-  ( ph  ->  ( -.  ( z  e.  ( `' ( x  e.  B  |->  C ) " y )  <-> 
z  e.  ( `' ( x  e.  B  |->  D ) " y
) )  ->  z  e.  A ) )
5251abssdv 3353 . . . . . . . . . . . 12  |-  ( ph  ->  { z  |  -.  ( z  e.  ( `' ( x  e.  B  |->  C ) "
y )  <->  z  e.  ( `' ( x  e.  B  |->  D ) "
y ) ) } 
C_  A )
536, 52syl5eqss 3328 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( `' ( x  e.  B  |->  C ) " y
)  \  ( `' ( x  e.  B  |->  D ) " y
) )  u.  (
( `' ( x  e.  B  |->  D )
" y )  \ 
( `' ( x  e.  B  |->  C )
" y ) ) )  C_  A )
5453unssad 3460 . . . . . . . . . 10  |-  ( ph  ->  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) )  C_  A )
55 mbfeqa.1 . . . . . . . . . 10  |-  ( ph  ->  A  C_  RR )
5654, 55sstrd 3294 . . . . . . . . 9  |-  ( ph  ->  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) )  C_  RR )
57 mbfeqa.2 . . . . . . . . . 10  |-  ( ph  ->  ( vol * `  A )  =  0 )
58 ovolssnul 19243 . . . . . . . . . 10  |-  ( ( ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) )  C_  A  /\  A  C_  RR  /\  ( vol * `  A )  =  0 )  -> 
( vol * `  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) ) )  =  0 )
5954, 55, 57, 58syl3anc 1184 . . . . . . . . 9  |-  ( ph  ->  ( vol * `  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) ) )  =  0 )
60 nulmbl 19290 . . . . . . . . 9  |-  ( ( ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) )  C_  RR  /\  ( vol * `  ( ( `' ( x  e.  B  |->  C ) "
y )  \  ( `' ( x  e.  B  |->  D ) "
y ) ) )  =  0 )  -> 
( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) )  e.  dom  vol )
6156, 59, 60syl2anc 643 . . . . . . . 8  |-  ( ph  ->  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) )  e.  dom  vol )
62 difmbl 19297 . . . . . . . 8  |-  ( ( ( `' ( x  e.  B  |->  C )
" y )  e. 
dom  vol  /\  ( ( `' ( x  e.  B  |->  C ) "
y )  \  ( `' ( x  e.  B  |->  D ) "
y ) )  e. 
dom  vol )  ->  (
( `' ( x  e.  B  |->  C )
" y )  \ 
( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) ) )  e.  dom  vol )
635, 61, 62syl2anr 465 . . . . . . 7  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  C ) " y
)  e.  dom  vol )  ->  ( ( `' ( x  e.  B  |->  C ) " y
)  \  ( ( `' ( x  e.  B  |->  C ) "
y )  \  ( `' ( x  e.  B  |->  D ) "
y ) ) )  e.  dom  vol )
644, 63syl5eqel 2464 . . . . . 6  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  C ) " y
)  e.  dom  vol )  ->  ( ( `' ( x  e.  B  |->  D ) " y
)  i^i  ( `' ( x  e.  B  |->  C ) " y
) )  e.  dom  vol )
6553unssbd 3461 . . . . . . . . 9  |-  ( ph  ->  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) )  C_  A )
6665, 55sstrd 3294 . . . . . . . 8  |-  ( ph  ->  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) )  C_  RR )
67 ovolssnul 19243 . . . . . . . . 9  |-  ( ( ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) )  C_  A  /\  A  C_  RR  /\  ( vol * `  A )  =  0 )  -> 
( vol * `  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) ) )  =  0 )
6865, 55, 57, 67syl3anc 1184 . . . . . . . 8  |-  ( ph  ->  ( vol * `  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) ) )  =  0 )
69 nulmbl 19290 . . . . . . . 8  |-  ( ( ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) )  C_  RR  /\  ( vol * `  ( ( `' ( x  e.  B  |->  D ) "
y )  \  ( `' ( x  e.  B  |->  C ) "
y ) ) )  =  0 )  -> 
( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) )  e.  dom  vol )
7066, 68, 69syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) )  e.  dom  vol )
7170adantr 452 . . . . . 6  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  C ) " y
)  e.  dom  vol )  ->  ( ( `' ( x  e.  B  |->  D ) " y
)  \  ( `' ( x  e.  B  |->  C ) " y
) )  e.  dom  vol )
72 unmbl 19292 . . . . . 6  |-  ( ( ( ( `' ( x  e.  B  |->  D ) " y )  i^i  ( `' ( x  e.  B  |->  C ) " y ) )  e.  dom  vol  /\  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) )  e.  dom  vol )  ->  ( ( ( `' ( x  e.  B  |->  D ) "
y )  i^i  ( `' ( x  e.  B  |->  C ) "
y ) )  u.  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) ) )  e.  dom  vol )
7364, 71, 72syl2anc 643 . . . . 5  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  C ) " y
)  e.  dom  vol )  ->  ( ( ( `' ( x  e.  B  |->  D ) "
y )  i^i  ( `' ( x  e.  B  |->  C ) "
y ) )  u.  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) ) )  e.  dom  vol )
741, 73syl5eqelr 2465 . . . 4  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  C ) " y
)  e.  dom  vol )  ->  ( `' ( x  e.  B  |->  D ) " y )  e.  dom  vol )
75 inundif 3642 . . . . 5  |-  ( ( ( `' ( x  e.  B  |->  C )
" y )  i^i  ( `' ( x  e.  B  |->  D )
" y ) )  u.  ( ( `' ( x  e.  B  |->  C ) " y
)  \  ( `' ( x  e.  B  |->  D ) " y
) ) )  =  ( `' ( x  e.  B  |->  C )
" y )
76 incom 3469 . . . . . . . 8  |-  ( ( `' ( x  e.  B  |->  C ) "
y )  i^i  ( `' ( x  e.  B  |->  D ) "
y ) )  =  ( ( `' ( x  e.  B  |->  D ) " y )  i^i  ( `' ( x  e.  B  |->  C ) " y ) )
77 dfin4 3517 . . . . . . . 8  |-  ( ( `' ( x  e.  B  |->  D ) "
y )  i^i  ( `' ( x  e.  B  |->  C ) "
y ) )  =  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( ( `' ( x  e.  B  |->  D ) " y
)  \  ( `' ( x  e.  B  |->  C ) " y
) ) )
7876, 77eqtri 2400 . . . . . . 7  |-  ( ( `' ( x  e.  B  |->  C ) "
y )  i^i  ( `' ( x  e.  B  |->  D ) "
y ) )  =  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( ( `' ( x  e.  B  |->  D ) " y
)  \  ( `' ( x  e.  B  |->  C ) " y
) ) )
79 id 20 . . . . . . . 8  |-  ( ( `' ( x  e.  B  |->  D ) "
y )  e.  dom  vol 
->  ( `' ( x  e.  B  |->  D )
" y )  e. 
dom  vol )
80 difmbl 19297 . . . . . . . 8  |-  ( ( ( `' ( x  e.  B  |->  D )
" y )  e. 
dom  vol  /\  ( ( `' ( x  e.  B  |->  D ) "
y )  \  ( `' ( x  e.  B  |->  C ) "
y ) )  e. 
dom  vol )  ->  (
( `' ( x  e.  B  |->  D )
" y )  \ 
( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) ) )  e.  dom  vol )
8179, 70, 80syl2anr 465 . . . . . . 7  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol )  ->  ( ( `' ( x  e.  B  |->  D ) " y
)  \  ( ( `' ( x  e.  B  |->  D ) "
y )  \  ( `' ( x  e.  B  |->  C ) "
y ) ) )  e.  dom  vol )
8278, 81syl5eqel 2464 . . . . . 6  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol )  ->  ( ( `' ( x  e.  B  |->  C ) " y
)  i^i  ( `' ( x  e.  B  |->  D ) " y
) )  e.  dom  vol )
8361adantr 452 . . . . . 6  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol )  ->  ( ( `' ( x  e.  B  |->  C ) " y
)  \  ( `' ( x  e.  B  |->  D ) " y
) )  e.  dom  vol )
84 unmbl 19292 . . . . . 6  |-  ( ( ( ( `' ( x  e.  B  |->  C ) " y )  i^i  ( `' ( x  e.  B  |->  D ) " y ) )  e.  dom  vol  /\  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) )  e.  dom  vol )  ->  ( ( ( `' ( x  e.  B  |->  C ) "
y )  i^i  ( `' ( x  e.  B  |->  D ) "
y ) )  u.  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) ) )  e.  dom  vol )
8582, 83, 84syl2anc 643 . . . . 5  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol )  ->  ( ( ( `' ( x  e.  B  |->  C ) "
y )  i^i  ( `' ( x  e.  B  |->  D ) "
y ) )  u.  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) ) )  e.  dom  vol )
8675, 85syl5eqelr 2465 . . . 4  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol )  ->  ( `' ( x  e.  B  |->  C ) " y )  e.  dom  vol )
8774, 86impbida 806 . . 3  |-  ( ph  ->  ( ( `' ( x  e.  B  |->  C ) " y )  e.  dom  vol  <->  ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol ) )
8887ralbidv 2662 . 2  |-  ( ph  ->  ( A. y  e. 
ran  (,) ( `' ( x  e.  B  |->  C ) " y )  e.  dom  vol  <->  A. y  e.  ran  (,) ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol ) )
89 ismbf 19382 . . 3  |-  ( ( x  e.  B  |->  C ) : B --> RR  ->  ( ( x  e.  B  |->  C )  e. MblFn  <->  A. y  e.  ran  (,) ( `' ( x  e.  B  |->  C ) " y
)  e.  dom  vol ) )
9037, 89syl 16 . 2  |-  ( ph  ->  ( ( x  e.  B  |->  C )  e. MblFn  <->  A. y  e.  ran  (,) ( `' ( x  e.  B  |->  C ) "
y )  e.  dom  vol ) )
91 ismbf 19382 . . 3  |-  ( ( x  e.  B  |->  D ) : B --> RR  ->  ( ( x  e.  B  |->  D )  e. MblFn  <->  A. y  e.  ran  (,) ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol ) )
9243, 91syl 16 . 2  |-  ( ph  ->  ( ( x  e.  B  |->  D )  e. MblFn  <->  A. y  e.  ran  (,) ( `' ( x  e.  B  |->  D ) "
y )  e.  dom  vol ) )
9388, 90, 923bitr4d 277 1  |-  ( ph  ->  ( ( x  e.  B  |->  C )  e. MblFn  <->  ( x  e.  B  |->  D )  e. MblFn ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   {cab 2366   A.wral 2642    \ cdif 3253    u. cun 3254    i^i cin 3255    C_ wss 3256    e. cmpt 4200   `'ccnv 4810   dom cdm 4811   ran crn 4812   "cima 4814    Fn wfn 5382   -->wf 5383   ` cfv 5387   RRcr 8915   0cc0 8916   (,)cioo 10841   vol *covol 19219   volcvol 19220  MblFncmbf 19366
This theorem is referenced by:  mbfeqa  19395
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-inf2 7522  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993  ax-pre-sup 8994
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-se 4476  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-isom 5396  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-of 6237  df-1st 6281  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-2o 6654  df-oadd 6657  df-er 6834  df-map 6949  df-pm 6950  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-sup 7374  df-oi 7405  df-card 7752  df-cda 7974  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-div 9603  df-nn 9926  df-2 9983  df-3 9984  df-n0 10147  df-z 10208  df-uz 10414  df-q 10500  df-rp 10538  df-xadd 10636  df-ioo 10845  df-ico 10847  df-icc 10848  df-fz 10969  df-fzo 11059  df-fl 11122  df-seq 11244  df-exp 11303  df-hash 11539  df-cj 11824  df-re 11825  df-im 11826  df-sqr 11960  df-abs 11961  df-clim 12202  df-sum 12400  df-xmet 16612  df-met 16613  df-ovol 19221  df-vol 19222  df-mbf 19372
  Copyright terms: Public domain W3C validator