MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfeqalem Unicode version

Theorem mbfeqalem 19522
Description: Lemma for mbfeqa 19523. (Contributed by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
mbfeqa.1  |-  ( ph  ->  A  C_  RR )
mbfeqa.2  |-  ( ph  ->  ( vol * `  A )  =  0 )
mbfeqa.3  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  =  D )
mbfeqalem.4  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  RR )
mbfeqalem.5  |-  ( (
ph  /\  x  e.  B )  ->  D  e.  RR )
Assertion
Ref Expression
mbfeqalem  |-  ( ph  ->  ( ( x  e.  B  |->  C )  e. MblFn  <->  ( x  e.  B  |->  D )  e. MblFn ) )
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hints:    C( x)    D( x)

Proof of Theorem mbfeqalem
Dummy variables  z 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inundif 3698 . . . . 5  |-  ( ( ( `' ( x  e.  B  |->  D )
" y )  i^i  ( `' ( x  e.  B  |->  C )
" y ) )  u.  ( ( `' ( x  e.  B  |->  D ) " y
)  \  ( `' ( x  e.  B  |->  C ) " y
) ) )  =  ( `' ( x  e.  B  |->  D )
" y )
2 incom 3525 . . . . . . . 8  |-  ( ( `' ( x  e.  B  |->  D ) "
y )  i^i  ( `' ( x  e.  B  |->  C ) "
y ) )  =  ( ( `' ( x  e.  B  |->  C ) " y )  i^i  ( `' ( x  e.  B  |->  D ) " y ) )
3 dfin4 3573 . . . . . . . 8  |-  ( ( `' ( x  e.  B  |->  C ) "
y )  i^i  ( `' ( x  e.  B  |->  D ) "
y ) )  =  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( ( `' ( x  e.  B  |->  C ) " y
)  \  ( `' ( x  e.  B  |->  D ) " y
) ) )
42, 3eqtri 2455 . . . . . . 7  |-  ( ( `' ( x  e.  B  |->  D ) "
y )  i^i  ( `' ( x  e.  B  |->  C ) "
y ) )  =  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( ( `' ( x  e.  B  |->  C ) " y
)  \  ( `' ( x  e.  B  |->  D ) " y
) ) )
5 id 20 . . . . . . . 8  |-  ( ( `' ( x  e.  B  |->  C ) "
y )  e.  dom  vol 
->  ( `' ( x  e.  B  |->  C )
" y )  e. 
dom  vol )
6 symdif2 3599 . . . . . . . . . . . 12  |-  ( ( ( `' ( x  e.  B  |->  C )
" y )  \ 
( `' ( x  e.  B  |->  D )
" y ) )  u.  ( ( `' ( x  e.  B  |->  D ) " y
)  \  ( `' ( x  e.  B  |->  C ) " y
) ) )  =  { z  |  -.  ( z  e.  ( `' ( x  e.  B  |->  C ) "
y )  <->  z  e.  ( `' ( x  e.  B  |->  D ) "
y ) ) }
7 eldif 3322 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ( B  \  A )  <->  ( z  e.  B  /\  -.  z  e.  A ) )
8 mbfeqa.3 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  =  D )
9 eldifi 3461 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  e.  ( B  \  A )  ->  x  e.  B )
109adantl 453 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  x  e.  B )
11 mbfeqalem.4 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  RR )
129, 11sylan2 461 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  e.  RR )
13 eqid 2435 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  e.  B  |->  C )  =  ( x  e.  B  |->  C )
1413fvmpt2 5803 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( x  e.  B  /\  C  e.  RR )  ->  ( ( x  e.  B  |->  C ) `  x )  =  C )
1510, 12, 14syl2anc 643 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  ( (
x  e.  B  |->  C ) `  x )  =  C )
16 mbfeqalem.5 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  x  e.  B )  ->  D  e.  RR )
179, 16sylan2 461 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  D  e.  RR )
18 eqid 2435 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  e.  B  |->  D )  =  ( x  e.  B  |->  D )
1918fvmpt2 5803 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( x  e.  B  /\  D  e.  RR )  ->  ( ( x  e.  B  |->  D ) `  x )  =  D )
2010, 17, 19syl2anc 643 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  ( (
x  e.  B  |->  D ) `  x )  =  D )
218, 15, 203eqtr4d 2477 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  ( (
x  e.  B  |->  C ) `  x )  =  ( ( x  e.  B  |->  D ) `
 x ) )
2221ralrimiva 2781 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  A. x  e.  ( B  \  A ) ( ( x  e.  B  |->  C ) `  x )  =  ( ( x  e.  B  |->  D ) `  x
) )
23 nfv 1629 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ z ( ( x  e.  B  |->  C ) `  x )  =  ( ( x  e.  B  |->  D ) `  x
)
24 nffvmpt1 5727 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  F/_ x
( ( x  e.  B  |->  C ) `  z )
25 nffvmpt1 5727 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  F/_ x
( ( x  e.  B  |->  D ) `  z )
2624, 25nfeq 2578 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ x
( ( x  e.  B  |->  C ) `  z )  =  ( ( x  e.  B  |->  D ) `  z
)
27 fveq2 5719 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  z  ->  (
( x  e.  B  |->  C ) `  x
)  =  ( ( x  e.  B  |->  C ) `  z ) )
28 fveq2 5719 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  z  ->  (
( x  e.  B  |->  D ) `  x
)  =  ( ( x  e.  B  |->  D ) `  z ) )
2927, 28eqeq12d 2449 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  z  ->  (
( ( x  e.  B  |->  C ) `  x )  =  ( ( x  e.  B  |->  D ) `  x
)  <->  ( ( x  e.  B  |->  C ) `
 z )  =  ( ( x  e.  B  |->  D ) `  z ) ) )
3023, 26, 29cbvral 2920 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A. x  e.  ( B  \  A ) ( ( x  e.  B  |->  C ) `  x )  =  ( ( x  e.  B  |->  D ) `
 x )  <->  A. z  e.  ( B  \  A
) ( ( x  e.  B  |->  C ) `
 z )  =  ( ( x  e.  B  |->  D ) `  z ) )
3122, 30sylib 189 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  A. z  e.  ( B  \  A ) ( ( x  e.  B  |->  C ) `  z )  =  ( ( x  e.  B  |->  D ) `  z
) )
3231r19.21bi 2796 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  z  e.  ( B  \  A ) )  ->  ( (
x  e.  B  |->  C ) `  z )  =  ( ( x  e.  B  |->  D ) `
 z ) )
3332eleq1d 2501 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  z  e.  ( B  \  A ) )  ->  ( (
( x  e.  B  |->  C ) `  z
)  e.  y  <->  ( (
x  e.  B  |->  D ) `  z )  e.  y ) )
347, 33sylan2br 463 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( z  e.  B  /\  -.  z  e.  A ) )  -> 
( ( ( x  e.  B  |->  C ) `
 z )  e.  y  <->  ( ( x  e.  B  |->  D ) `
 z )  e.  y ) )
3534anass1rs 783 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  -.  z  e.  A )  /\  z  e.  B
)  ->  ( (
( x  e.  B  |->  C ) `  z
)  e.  y  <->  ( (
x  e.  B  |->  D ) `  z )  e.  y ) )
3635pm5.32da 623 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  -.  z  e.  A )  ->  (
( z  e.  B  /\  ( ( x  e.  B  |->  C ) `  z )  e.  y )  <->  ( z  e.  B  /\  ( ( x  e.  B  |->  D ) `  z )  e.  y ) ) )
3711, 13fmptd 5884 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( x  e.  B  |->  C ) : B --> RR )
38 ffn 5582 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  B  |->  C ) : B --> RR  ->  ( x  e.  B  |->  C )  Fn  B )
3937, 38syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( x  e.  B  |->  C )  Fn  B
)
4039adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  -.  z  e.  A )  ->  (
x  e.  B  |->  C )  Fn  B )
41 elpreima 5841 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  B  |->  C )  Fn  B  -> 
( z  e.  ( `' ( x  e.  B  |->  C ) "
y )  <->  ( z  e.  B  /\  (
( x  e.  B  |->  C ) `  z
)  e.  y ) ) )
4240, 41syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  -.  z  e.  A )  ->  (
z  e.  ( `' ( x  e.  B  |->  C ) " y
)  <->  ( z  e.  B  /\  ( ( x  e.  B  |->  C ) `  z )  e.  y ) ) )
4316, 18fmptd 5884 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( x  e.  B  |->  D ) : B --> RR )
44 ffn 5582 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  B  |->  D ) : B --> RR  ->  ( x  e.  B  |->  D )  Fn  B )
4543, 44syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( x  e.  B  |->  D )  Fn  B
)
4645adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  -.  z  e.  A )  ->  (
x  e.  B  |->  D )  Fn  B )
47 elpreima 5841 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  B  |->  D )  Fn  B  -> 
( z  e.  ( `' ( x  e.  B  |->  D ) "
y )  <->  ( z  e.  B  /\  (
( x  e.  B  |->  D ) `  z
)  e.  y ) ) )
4846, 47syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  -.  z  e.  A )  ->  (
z  e.  ( `' ( x  e.  B  |->  D ) " y
)  <->  ( z  e.  B  /\  ( ( x  e.  B  |->  D ) `  z )  e.  y ) ) )
4936, 42, 483bitr4d 277 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  -.  z  e.  A )  ->  (
z  e.  ( `' ( x  e.  B  |->  C ) " y
)  <->  z  e.  ( `' ( x  e.  B  |->  D ) "
y ) ) )
5049ex 424 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( -.  z  e.  A  ->  ( z  e.  ( `' ( x  e.  B  |->  C )
" y )  <->  z  e.  ( `' ( x  e.  B  |->  D ) "
y ) ) ) )
5150con1d 118 . . . . . . . . . . . . 13  |-  ( ph  ->  ( -.  ( z  e.  ( `' ( x  e.  B  |->  C ) " y )  <-> 
z  e.  ( `' ( x  e.  B  |->  D ) " y
) )  ->  z  e.  A ) )
5251abssdv 3409 . . . . . . . . . . . 12  |-  ( ph  ->  { z  |  -.  ( z  e.  ( `' ( x  e.  B  |->  C ) "
y )  <->  z  e.  ( `' ( x  e.  B  |->  D ) "
y ) ) } 
C_  A )
536, 52syl5eqss 3384 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( `' ( x  e.  B  |->  C ) " y
)  \  ( `' ( x  e.  B  |->  D ) " y
) )  u.  (
( `' ( x  e.  B  |->  D )
" y )  \ 
( `' ( x  e.  B  |->  C )
" y ) ) )  C_  A )
5453unssad 3516 . . . . . . . . . 10  |-  ( ph  ->  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) )  C_  A )
55 mbfeqa.1 . . . . . . . . . 10  |-  ( ph  ->  A  C_  RR )
5654, 55sstrd 3350 . . . . . . . . 9  |-  ( ph  ->  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) )  C_  RR )
57 mbfeqa.2 . . . . . . . . . 10  |-  ( ph  ->  ( vol * `  A )  =  0 )
58 ovolssnul 19371 . . . . . . . . . 10  |-  ( ( ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) )  C_  A  /\  A  C_  RR  /\  ( vol * `  A )  =  0 )  -> 
( vol * `  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) ) )  =  0 )
5954, 55, 57, 58syl3anc 1184 . . . . . . . . 9  |-  ( ph  ->  ( vol * `  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) ) )  =  0 )
60 nulmbl 19418 . . . . . . . . 9  |-  ( ( ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) )  C_  RR  /\  ( vol * `  ( ( `' ( x  e.  B  |->  C ) "
y )  \  ( `' ( x  e.  B  |->  D ) "
y ) ) )  =  0 )  -> 
( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) )  e.  dom  vol )
6156, 59, 60syl2anc 643 . . . . . . . 8  |-  ( ph  ->  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) )  e.  dom  vol )
62 difmbl 19425 . . . . . . . 8  |-  ( ( ( `' ( x  e.  B  |->  C )
" y )  e. 
dom  vol  /\  ( ( `' ( x  e.  B  |->  C ) "
y )  \  ( `' ( x  e.  B  |->  D ) "
y ) )  e. 
dom  vol )  ->  (
( `' ( x  e.  B  |->  C )
" y )  \ 
( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) ) )  e.  dom  vol )
635, 61, 62syl2anr 465 . . . . . . 7  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  C ) " y
)  e.  dom  vol )  ->  ( ( `' ( x  e.  B  |->  C ) " y
)  \  ( ( `' ( x  e.  B  |->  C ) "
y )  \  ( `' ( x  e.  B  |->  D ) "
y ) ) )  e.  dom  vol )
644, 63syl5eqel 2519 . . . . . 6  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  C ) " y
)  e.  dom  vol )  ->  ( ( `' ( x  e.  B  |->  D ) " y
)  i^i  ( `' ( x  e.  B  |->  C ) " y
) )  e.  dom  vol )
6553unssbd 3517 . . . . . . . . 9  |-  ( ph  ->  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) )  C_  A )
6665, 55sstrd 3350 . . . . . . . 8  |-  ( ph  ->  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) )  C_  RR )
67 ovolssnul 19371 . . . . . . . . 9  |-  ( ( ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) )  C_  A  /\  A  C_  RR  /\  ( vol * `  A )  =  0 )  -> 
( vol * `  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) ) )  =  0 )
6865, 55, 57, 67syl3anc 1184 . . . . . . . 8  |-  ( ph  ->  ( vol * `  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) ) )  =  0 )
69 nulmbl 19418 . . . . . . . 8  |-  ( ( ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) )  C_  RR  /\  ( vol * `  ( ( `' ( x  e.  B  |->  D ) "
y )  \  ( `' ( x  e.  B  |->  C ) "
y ) ) )  =  0 )  -> 
( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) )  e.  dom  vol )
7066, 68, 69syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) )  e.  dom  vol )
7170adantr 452 . . . . . 6  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  C ) " y
)  e.  dom  vol )  ->  ( ( `' ( x  e.  B  |->  D ) " y
)  \  ( `' ( x  e.  B  |->  C ) " y
) )  e.  dom  vol )
72 unmbl 19420 . . . . . 6  |-  ( ( ( ( `' ( x  e.  B  |->  D ) " y )  i^i  ( `' ( x  e.  B  |->  C ) " y ) )  e.  dom  vol  /\  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) )  e.  dom  vol )  ->  ( ( ( `' ( x  e.  B  |->  D ) "
y )  i^i  ( `' ( x  e.  B  |->  C ) "
y ) )  u.  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) ) )  e.  dom  vol )
7364, 71, 72syl2anc 643 . . . . 5  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  C ) " y
)  e.  dom  vol )  ->  ( ( ( `' ( x  e.  B  |->  D ) "
y )  i^i  ( `' ( x  e.  B  |->  C ) "
y ) )  u.  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) ) )  e.  dom  vol )
741, 73syl5eqelr 2520 . . . 4  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  C ) " y
)  e.  dom  vol )  ->  ( `' ( x  e.  B  |->  D ) " y )  e.  dom  vol )
75 inundif 3698 . . . . 5  |-  ( ( ( `' ( x  e.  B  |->  C )
" y )  i^i  ( `' ( x  e.  B  |->  D )
" y ) )  u.  ( ( `' ( x  e.  B  |->  C ) " y
)  \  ( `' ( x  e.  B  |->  D ) " y
) ) )  =  ( `' ( x  e.  B  |->  C )
" y )
76 incom 3525 . . . . . . . 8  |-  ( ( `' ( x  e.  B  |->  C ) "
y )  i^i  ( `' ( x  e.  B  |->  D ) "
y ) )  =  ( ( `' ( x  e.  B  |->  D ) " y )  i^i  ( `' ( x  e.  B  |->  C ) " y ) )
77 dfin4 3573 . . . . . . . 8  |-  ( ( `' ( x  e.  B  |->  D ) "
y )  i^i  ( `' ( x  e.  B  |->  C ) "
y ) )  =  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( ( `' ( x  e.  B  |->  D ) " y
)  \  ( `' ( x  e.  B  |->  C ) " y
) ) )
7876, 77eqtri 2455 . . . . . . 7  |-  ( ( `' ( x  e.  B  |->  C ) "
y )  i^i  ( `' ( x  e.  B  |->  D ) "
y ) )  =  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( ( `' ( x  e.  B  |->  D ) " y
)  \  ( `' ( x  e.  B  |->  C ) " y
) ) )
79 id 20 . . . . . . . 8  |-  ( ( `' ( x  e.  B  |->  D ) "
y )  e.  dom  vol 
->  ( `' ( x  e.  B  |->  D )
" y )  e. 
dom  vol )
80 difmbl 19425 . . . . . . . 8  |-  ( ( ( `' ( x  e.  B  |->  D )
" y )  e. 
dom  vol  /\  ( ( `' ( x  e.  B  |->  D ) "
y )  \  ( `' ( x  e.  B  |->  C ) "
y ) )  e. 
dom  vol )  ->  (
( `' ( x  e.  B  |->  D )
" y )  \ 
( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) ) )  e.  dom  vol )
8179, 70, 80syl2anr 465 . . . . . . 7  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol )  ->  ( ( `' ( x  e.  B  |->  D ) " y
)  \  ( ( `' ( x  e.  B  |->  D ) "
y )  \  ( `' ( x  e.  B  |->  C ) "
y ) ) )  e.  dom  vol )
8278, 81syl5eqel 2519 . . . . . 6  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol )  ->  ( ( `' ( x  e.  B  |->  C ) " y
)  i^i  ( `' ( x  e.  B  |->  D ) " y
) )  e.  dom  vol )
8361adantr 452 . . . . . 6  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol )  ->  ( ( `' ( x  e.  B  |->  C ) " y
)  \  ( `' ( x  e.  B  |->  D ) " y
) )  e.  dom  vol )
84 unmbl 19420 . . . . . 6  |-  ( ( ( ( `' ( x  e.  B  |->  C ) " y )  i^i  ( `' ( x  e.  B  |->  D ) " y ) )  e.  dom  vol  /\  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) )  e.  dom  vol )  ->  ( ( ( `' ( x  e.  B  |->  C ) "
y )  i^i  ( `' ( x  e.  B  |->  D ) "
y ) )  u.  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) ) )  e.  dom  vol )
8582, 83, 84syl2anc 643 . . . . 5  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol )  ->  ( ( ( `' ( x  e.  B  |->  C ) "
y )  i^i  ( `' ( x  e.  B  |->  D ) "
y ) )  u.  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) ) )  e.  dom  vol )
8675, 85syl5eqelr 2520 . . . 4  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol )  ->  ( `' ( x  e.  B  |->  C ) " y )  e.  dom  vol )
8774, 86impbida 806 . . 3  |-  ( ph  ->  ( ( `' ( x  e.  B  |->  C ) " y )  e.  dom  vol  <->  ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol ) )
8887ralbidv 2717 . 2  |-  ( ph  ->  ( A. y  e. 
ran  (,) ( `' ( x  e.  B  |->  C ) " y )  e.  dom  vol  <->  A. y  e.  ran  (,) ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol ) )
89 ismbf 19510 . . 3  |-  ( ( x  e.  B  |->  C ) : B --> RR  ->  ( ( x  e.  B  |->  C )  e. MblFn  <->  A. y  e.  ran  (,) ( `' ( x  e.  B  |->  C ) " y
)  e.  dom  vol ) )
9037, 89syl 16 . 2  |-  ( ph  ->  ( ( x  e.  B  |->  C )  e. MblFn  <->  A. y  e.  ran  (,) ( `' ( x  e.  B  |->  C ) "
y )  e.  dom  vol ) )
91 ismbf 19510 . . 3  |-  ( ( x  e.  B  |->  D ) : B --> RR  ->  ( ( x  e.  B  |->  D )  e. MblFn  <->  A. y  e.  ran  (,) ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol ) )
9243, 91syl 16 . 2  |-  ( ph  ->  ( ( x  e.  B  |->  D )  e. MblFn  <->  A. y  e.  ran  (,) ( `' ( x  e.  B  |->  D ) "
y )  e.  dom  vol ) )
9388, 90, 923bitr4d 277 1  |-  ( ph  ->  ( ( x  e.  B  |->  C )  e. MblFn  <->  ( x  e.  B  |->  D )  e. MblFn ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   {cab 2421   A.wral 2697    \ cdif 3309    u. cun 3310    i^i cin 3311    C_ wss 3312    e. cmpt 4258   `'ccnv 4868   dom cdm 4869   ran crn 4870   "cima 4872    Fn wfn 5440   -->wf 5441   ` cfv 5445   RRcr 8978   0cc0 8979   (,)cioo 10905   vol *covol 19347   volcvol 19348  MblFncmbf 19494
This theorem is referenced by:  mbfeqa  19523
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056  ax-pre-sup 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-of 6296  df-1st 6340  df-2nd 6341  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-2o 6716  df-oadd 6719  df-er 6896  df-map 7011  df-pm 7012  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-sup 7437  df-oi 7468  df-card 7815  df-cda 8037  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667  df-nn 9990  df-2 10047  df-3 10048  df-n0 10211  df-z 10272  df-uz 10478  df-q 10564  df-rp 10602  df-xadd 10700  df-ioo 10909  df-ico 10911  df-icc 10912  df-fz 11033  df-fzo 11124  df-fl 11190  df-seq 11312  df-exp 11371  df-hash 11607  df-cj 11892  df-re 11893  df-im 11894  df-sqr 12028  df-abs 12029  df-clim 12270  df-sum 12468  df-xmet 16683  df-met 16684  df-ovol 19349  df-vol 19350  df-mbf 19500
  Copyright terms: Public domain W3C validator