MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseqlem6 Structured version   Unicode version

Theorem mbfi1fseqlem6 19604
Description: Lemma for mbfi1fseq 19605. Verify that  G converges pointwise to  F, and wrap up the existence quantifier. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1  |-  ( ph  ->  F  e. MblFn )
mbfi1fseq.2  |-  ( ph  ->  F : RR --> ( 0 [,)  +oo ) )
mbfi1fseq.3  |-  J  =  ( m  e.  NN ,  y  e.  RR  |->  ( ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) )  /  (
2 ^ m ) ) )
mbfi1fseq.4  |-  G  =  ( m  e.  NN  |->  ( x  e.  RR  |->  if ( x  e.  (
-u m [,] m
) ,  if ( ( m J x )  <_  m , 
( m J x ) ,  m ) ,  0 ) ) )
Assertion
Ref Expression
mbfi1fseqlem6  |-  ( ph  ->  E. g ( g : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0 p  o R  <_  ( g `  n )  /\  (
g `  n )  o R  <_  ( g `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
Distinct variable groups:    g, m, n, x, y, F    g, G, n, x    m, J    ph, m, n, x, y
Allowed substitution hints:    ph( g)    G( y, m)    J( x, y, g, n)

Proof of Theorem mbfi1fseqlem6
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfi1fseq.1 . . 3  |-  ( ph  ->  F  e. MblFn )
2 mbfi1fseq.2 . . 3  |-  ( ph  ->  F : RR --> ( 0 [,)  +oo ) )
3 mbfi1fseq.3 . . 3  |-  J  =  ( m  e.  NN ,  y  e.  RR  |->  ( ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) )  /  (
2 ^ m ) ) )
4 mbfi1fseq.4 . . 3  |-  G  =  ( m  e.  NN  |->  ( x  e.  RR  |->  if ( x  e.  (
-u m [,] m
) ,  if ( ( m J x )  <_  m , 
( m J x ) ,  m ) ,  0 ) ) )
51, 2, 3, 4mbfi1fseqlem4 19602 . 2  |-  ( ph  ->  G : NN --> dom  S.1 )
61, 2, 3, 4mbfi1fseqlem5 19603 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  ( 0 p  o R  <_ 
( G `  n
)  /\  ( G `  n )  o R  <_  ( G `  ( n  +  1
) ) ) )
76ralrimiva 2781 . 2  |-  ( ph  ->  A. n  e.  NN  ( 0 p  o R  <_  ( G `  n )  /\  ( G `  n )  o R  <_  ( G `
 ( n  + 
1 ) ) ) )
8 simpr 448 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  x  e.  RR )
98recnd 9106 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  x  e.  CC )
109abscld 12230 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( abs `  x )  e.  RR )
112ffvelrnda 5862 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  ( 0 [,)  +oo ) )
12 elrege0 10999 . . . . . . . 8  |-  ( ( F `  x )  e.  ( 0 [,) 
+oo )  <->  ( ( F `  x )  e.  RR  /\  0  <_ 
( F `  x
) ) )
1311, 12sylib 189 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  x )  e.  RR  /\  0  <_  ( F `  x
) ) )
1413simpld 446 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  RR )
1510, 14readdcld 9107 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( abs `  x )  +  ( F `  x ) )  e.  RR )
16 arch 10210 . . . . 5  |-  ( ( ( abs `  x
)  +  ( F `
 x ) )  e.  RR  ->  E. k  e.  NN  ( ( abs `  x )  +  ( F `  x ) )  <  k )
1715, 16syl 16 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  E. k  e.  NN  ( ( abs `  x )  +  ( F `  x ) )  <  k )
18 eqid 2435 . . . . 5  |-  ( ZZ>= `  k )  =  (
ZZ>= `  k )
19 nnz 10295 . . . . . 6  |-  ( k  e.  NN  ->  k  e.  ZZ )
2019ad2antrl 709 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  ->  k  e.  ZZ )
21 nnuz 10513 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
22 1z 10303 . . . . . . . . 9  |-  1  e.  ZZ
2322a1i 11 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  1  e.  ZZ )
24 1re 9082 . . . . . . . . . . . 12  |-  1  e.  RR
2524rehalfcli 10208 . . . . . . . . . . 11  |-  ( 1  /  2 )  e.  RR
2625recni 9094 . . . . . . . . . 10  |-  ( 1  /  2 )  e.  CC
2726a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( 1  /  2 )  e.  CC )
28 0re 9083 . . . . . . . . . . . . 13  |-  0  e.  RR
29 halfgt0 10180 . . . . . . . . . . . . 13  |-  0  <  ( 1  /  2
)
3028, 25, 29ltleii 9188 . . . . . . . . . . . 12  |-  0  <_  ( 1  /  2
)
31 absid 12093 . . . . . . . . . . . 12  |-  ( ( ( 1  /  2
)  e.  RR  /\  0  <_  ( 1  / 
2 ) )  -> 
( abs `  (
1  /  2 ) )  =  ( 1  /  2 ) )
3225, 30, 31mp2an 654 . . . . . . . . . . 11  |-  ( abs `  ( 1  /  2
) )  =  ( 1  /  2 )
33 halflt1 10181 . . . . . . . . . . 11  |-  ( 1  /  2 )  <  1
3432, 33eqbrtri 4223 . . . . . . . . . 10  |-  ( abs `  ( 1  /  2
) )  <  1
3534a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( abs `  ( 1  /  2
) )  <  1
)
3627, 35expcnv 12635 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) )  ~~>  0 )
3714recnd 9106 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  CC )
38 nnex 9998 . . . . . . . . . 10  |-  NN  e.  _V
3938mptex 5958 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) )  e.  _V
4039a1i 11 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) )  e.  _V )
41 nnnn0 10220 . . . . . . . . . . 11  |-  ( j  e.  NN  ->  j  e.  NN0 )
4241adantl 453 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  j  e.  NN )  ->  j  e.  NN0 )
43 oveq2 6081 . . . . . . . . . . 11  |-  ( n  =  j  ->  (
( 1  /  2
) ^ n )  =  ( ( 1  /  2 ) ^
j ) )
44 eqid 2435 . . . . . . . . . . 11  |-  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) )  =  ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) )
45 ovex 6098 . . . . . . . . . . 11  |-  ( ( 1  /  2 ) ^ j )  e. 
_V
4643, 44, 45fvmpt 5798 . . . . . . . . . 10  |-  ( j  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 j )  =  ( ( 1  / 
2 ) ^ j
) )
4742, 46syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  j  e.  NN )  ->  (
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) `  j
)  =  ( ( 1  /  2 ) ^ j ) )
48 expcl 11391 . . . . . . . . . 10  |-  ( ( ( 1  /  2
)  e.  CC  /\  j  e.  NN0 )  -> 
( ( 1  / 
2 ) ^ j
)  e.  CC )
4926, 42, 48sylancr 645 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  j  e.  NN )  ->  (
( 1  /  2
) ^ j )  e.  CC )
5047, 49eqeltrd 2509 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  j  e.  NN )  ->  (
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) `  j
)  e.  CC )
5143oveq2d 6089 . . . . . . . . . . 11  |-  ( n  =  j  ->  (
( F `  x
)  -  ( ( 1  /  2 ) ^ n ) )  =  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ j
) ) )
52 eqid 2435 . . . . . . . . . . 11  |-  ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) )  =  ( n  e.  NN  |->  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ n
) ) )
53 ovex 6098 . . . . . . . . . . 11  |-  ( ( F `  x )  -  ( ( 1  /  2 ) ^
j ) )  e. 
_V
5451, 52, 53fvmpt 5798 . . . . . . . . . 10  |-  ( j  e.  NN  ->  (
( n  e.  NN  |->  ( ( F `  x )  -  (
( 1  /  2
) ^ n ) ) ) `  j
)  =  ( ( F `  x )  -  ( ( 1  /  2 ) ^
j ) ) )
5554adantl 453 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  j  e.  NN )  ->  (
( n  e.  NN  |->  ( ( F `  x )  -  (
( 1  /  2
) ^ n ) ) ) `  j
)  =  ( ( F `  x )  -  ( ( 1  /  2 ) ^
j ) ) )
5647oveq2d 6089 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  j  e.  NN )  ->  (
( F `  x
)  -  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 j ) )  =  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ j
) ) )
5755, 56eqtr4d 2470 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  j  e.  NN )  ->  (
( n  e.  NN  |->  ( ( F `  x )  -  (
( 1  /  2
) ^ n ) ) ) `  j
)  =  ( ( F `  x )  -  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 j ) ) )
5821, 23, 36, 37, 40, 50, 57climsubc2 12424 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) )  ~~>  ( ( F `  x )  -  0 ) )
5937subid1d 9392 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  x )  -  0 )  =  ( F `  x
) )
6058, 59breqtrd 4228 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) )  ~~>  ( F `  x
) )
6160adantr 452 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  ->  ( n  e.  NN  |->  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ n
) ) )  ~~>  ( F `
 x ) )
6238mptex 5958 . . . . . 6  |-  ( n  e.  NN  |->  ( ( G `  n ) `
 x ) )  e.  _V
6362a1i 11 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  ->  ( n  e.  NN  |->  ( ( G `
 n ) `  x ) )  e. 
_V )
64 simprl 733 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  ->  k  e.  NN )
6521uztrn2 10495 . . . . . . . 8  |-  ( ( k  e.  NN  /\  j  e.  ( ZZ>= `  k ) )  -> 
j  e.  NN )
6664, 65sylan 458 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  j  e.  NN )
6766, 54syl 16 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) ) `
 j )  =  ( ( F `  x )  -  (
( 1  /  2
) ^ j ) ) )
6814ad2antrr 707 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( F `  x )  e.  RR )
6966, 41syl 16 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  j  e.  NN0 )
70 reexpcl 11390 . . . . . . . 8  |-  ( ( ( 1  /  2
)  e.  RR  /\  j  e.  NN0 )  -> 
( ( 1  / 
2 ) ^ j
)  e.  RR )
7125, 69, 70sylancr 645 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( 1  /  2 ) ^
j )  e.  RR )
7268, 71resubcld 9457 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ j
) )  e.  RR )
7367, 72eqeltrd 2509 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) ) `
 j )  e.  RR )
74 fveq2 5720 . . . . . . . . 9  |-  ( n  =  j  ->  ( G `  n )  =  ( G `  j ) )
7574fveq1d 5722 . . . . . . . 8  |-  ( n  =  j  ->  (
( G `  n
) `  x )  =  ( ( G `
 j ) `  x ) )
76 eqid 2435 . . . . . . . 8  |-  ( n  e.  NN  |->  ( ( G `  n ) `
 x ) )  =  ( n  e.  NN  |->  ( ( G `
 n ) `  x ) )
77 fvex 5734 . . . . . . . 8  |-  ( ( G `  j ) `
 x )  e. 
_V
7875, 76, 77fvmpt 5798 . . . . . . 7  |-  ( j  e.  NN  ->  (
( n  e.  NN  |->  ( ( G `  n ) `  x
) ) `  j
)  =  ( ( G `  j ) `
 x ) )
7966, 78syl 16 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( G `  n ) `
 x ) ) `
 j )  =  ( ( G `  j ) `  x
) )
805ad3antrrr 711 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  G : NN --> dom  S.1 )
8180, 66ffvelrnd 5863 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( G `  j )  e.  dom  S.1 )
82 i1ff 19560 . . . . . . . 8  |-  ( ( G `  j )  e.  dom  S.1  ->  ( G `  j ) : RR --> RR )
8381, 82syl 16 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( G `  j ) : RR --> RR )
848ad2antrr 707 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  x  e.  RR )
8583, 84ffvelrnd 5863 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( G `
 j ) `  x )  e.  RR )
8679, 85eqeltrd 2509 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( G `  n ) `
 x ) ) `
 j )  e.  RR )
8737ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( F `  x )  e.  CC )
88 2nn 10125 . . . . . . . . . . . . . 14  |-  2  e.  NN
89 nnexpcl 11386 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  NN  /\  j  e.  NN0 )  -> 
( 2 ^ j
)  e.  NN )
9088, 69, 89sylancr 645 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( 2 ^ j )  e.  NN )
9190nnred 10007 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( 2 ^ j )  e.  RR )
9291recnd 9106 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( 2 ^ j )  e.  CC )
9390nnne0d 10036 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( 2 ^ j )  =/=  0
)
9487, 92, 93divcan4d 9788 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( F `  x )  x.  ( 2 ^ j ) )  / 
( 2 ^ j
) )  =  ( F `  x ) )
9594eqcomd 2440 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( F `  x )  =  ( ( ( F `  x )  x.  (
2 ^ j ) )  /  ( 2 ^ j ) ) )
96 2cn 10062 . . . . . . . . . . 11  |-  2  e.  CC
9796a1i 11 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  2  e.  CC )
98 2ne0 10075 . . . . . . . . . . 11  |-  2  =/=  0
9998a1i 11 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  2  =/=  0
)
100 eluzelz 10488 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  k
)  ->  j  e.  ZZ )
101100adantl 453 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  j  e.  ZZ )
10297, 99, 101exprecd 11523 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( 1  /  2 ) ^
j )  =  ( 1  /  ( 2 ^ j ) ) )
10395, 102oveq12d 6091 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ j
) )  =  ( ( ( ( F `
 x )  x.  ( 2 ^ j
) )  /  (
2 ^ j ) )  -  ( 1  /  ( 2 ^ j ) ) ) )
10468, 91remulcld 9108 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  x.  ( 2 ^ j
) )  e.  RR )
105104recnd 9106 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  x.  ( 2 ^ j
) )  e.  CC )
106 ax-1cn 9040 . . . . . . . . . 10  |-  1  e.  CC
107106a1i 11 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  1  e.  CC )
108105, 107, 92, 93divsubdird 9821 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( ( F `  x
)  x.  ( 2 ^ j ) )  -  1 )  / 
( 2 ^ j
) )  =  ( ( ( ( F `
 x )  x.  ( 2 ^ j
) )  /  (
2 ^ j ) )  -  ( 1  /  ( 2 ^ j ) ) ) )
109103, 108eqtr4d 2470 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ j
) )  =  ( ( ( ( F `
 x )  x.  ( 2 ^ j
) )  -  1 )  /  ( 2 ^ j ) ) )
110 fllep1 11202 . . . . . . . . . 10  |-  ( ( ( F `  x
)  x.  ( 2 ^ j ) )  e.  RR  ->  (
( F `  x
)  x.  ( 2 ^ j ) )  <_  ( ( |_
`  ( ( F `
 x )  x.  ( 2 ^ j
) ) )  +  1 ) )
111104, 110syl 16 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  x.  ( 2 ^ j
) )  <_  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  +  1 ) )
11224a1i 11 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  1  e.  RR )
113 reflcl 11197 . . . . . . . . . . 11  |-  ( ( ( F `  x
)  x.  ( 2 ^ j ) )  e.  RR  ->  ( |_ `  ( ( F `
 x )  x.  ( 2 ^ j
) ) )  e.  RR )
114104, 113syl 16 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( |_ `  ( ( F `  x )  x.  (
2 ^ j ) ) )  e.  RR )
115104, 112, 114lesubaddd 9615 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( ( F `  x
)  x.  ( 2 ^ j ) )  -  1 )  <_ 
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  <->  ( ( F `
 x )  x.  ( 2 ^ j
) )  <_  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  +  1 ) ) )
116111, 115mpbird 224 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( F `  x )  x.  ( 2 ^ j ) )  - 
1 )  <_  ( |_ `  ( ( F `
 x )  x.  ( 2 ^ j
) ) ) )
117 peano2rem 9359 . . . . . . . . . 10  |-  ( ( ( F `  x
)  x.  ( 2 ^ j ) )  e.  RR  ->  (
( ( F `  x )  x.  (
2 ^ j ) )  -  1 )  e.  RR )
118104, 117syl 16 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( F `  x )  x.  ( 2 ^ j ) )  - 
1 )  e.  RR )
11990nngt0d 10035 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  0  <  (
2 ^ j ) )
120 lediv1 9867 . . . . . . . . 9  |-  ( ( ( ( ( F `
 x )  x.  ( 2 ^ j
) )  -  1 )  e.  RR  /\  ( |_ `  ( ( F `  x )  x.  ( 2 ^ j ) ) )  e.  RR  /\  (
( 2 ^ j
)  e.  RR  /\  0  <  ( 2 ^ j ) ) )  ->  ( ( ( ( F `  x
)  x.  ( 2 ^ j ) )  -  1 )  <_ 
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  <->  ( ( ( ( F `  x
)  x.  ( 2 ^ j ) )  -  1 )  / 
( 2 ^ j
) )  <_  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) ) ) )
121118, 114, 91, 119, 120syl112anc 1188 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( ( F `  x
)  x.  ( 2 ^ j ) )  -  1 )  <_ 
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  <->  ( ( ( ( F `  x
)  x.  ( 2 ^ j ) )  -  1 )  / 
( 2 ^ j
) )  <_  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) ) ) )
122116, 121mpbid 202 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( ( F `  x
)  x.  ( 2 ^ j ) )  -  1 )  / 
( 2 ^ j
) )  <_  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) ) )
123109, 122eqbrtrd 4224 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ j
) )  <_  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) ) )
1241, 2, 3, 4mbfi1fseqlem2 19600 . . . . . . . . . 10  |-  ( j  e.  NN  ->  ( G `  j )  =  ( x  e.  RR  |->  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_  j ,  ( j J x ) ,  j ) ,  0 ) ) )
12566, 124syl 16 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( G `  j )  =  ( x  e.  RR  |->  if ( x  e.  (
-u j [,] j
) ,  if ( ( j J x )  <_  j , 
( j J x ) ,  j ) ,  0 ) ) )
126125fveq1d 5722 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( G `
 j ) `  x )  =  ( ( x  e.  RR  |->  if ( x  e.  (
-u j [,] j
) ,  if ( ( j J x )  <_  j , 
( j J x ) ,  j ) ,  0 ) ) `
 x ) )
127 ovex 6098 . . . . . . . . . . 11  |-  ( j J x )  e. 
_V
128 vex 2951 . . . . . . . . . . 11  |-  j  e. 
_V
129127, 128ifex 3789 . . . . . . . . . 10  |-  if ( ( j J x )  <_  j , 
( j J x ) ,  j )  e.  _V
130 c0ex 9077 . . . . . . . . . 10  |-  0  e.  _V
131129, 130ifex 3789 . . . . . . . . 9  |-  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_ 
j ,  ( j J x ) ,  j ) ,  0 )  e.  _V
132 eqid 2435 . . . . . . . . . 10  |-  ( x  e.  RR  |->  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_ 
j ,  ( j J x ) ,  j ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  (
-u j [,] j
) ,  if ( ( j J x )  <_  j , 
( j J x ) ,  j ) ,  0 ) )
133132fvmpt2 5804 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  if ( x  e.  (
-u j [,] j
) ,  if ( ( j J x )  <_  j , 
( j J x ) ,  j ) ,  0 )  e. 
_V )  ->  (
( x  e.  RR  |->  if ( x  e.  (
-u j [,] j
) ,  if ( ( j J x )  <_  j , 
( j J x ) ,  j ) ,  0 ) ) `
 x )  =  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_  j ,  ( j J x ) ,  j ) ,  0 ) )
13484, 131, 133sylancl 644 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( x  e.  RR  |->  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_ 
j ,  ( j J x ) ,  j ) ,  0 ) ) `  x
)  =  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_ 
j ,  ( j J x ) ,  j ) ,  0 ) )
13579, 126, 1343eqtrd 2471 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( G `  n ) `
 x ) ) `
 j )  =  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_  j ,  ( j J x ) ,  j ) ,  0 ) )
13610ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( abs `  x
)  e.  RR )
13715ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( abs `  x )  +  ( F `  x ) )  e.  RR )
13866nnred 10007 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  j  e.  RR )
13911ad2antrr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( F `  x )  e.  ( 0 [,)  +oo )
)
140139, 12sylib 189 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  e.  RR  /\  0  <_ 
( F `  x
) ) )
141140simprd 450 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  0  <_  ( F `  x )
)
142136, 68addge01d 9606 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( 0  <_ 
( F `  x
)  <->  ( abs `  x
)  <_  ( ( abs `  x )  +  ( F `  x
) ) ) )
143141, 142mpbid 202 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( abs `  x
)  <_  ( ( abs `  x )  +  ( F `  x
) ) )
14464adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  k  e.  NN )
145144nnred 10007 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  k  e.  RR )
146 simplrr 738 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( abs `  x )  +  ( F `  x ) )  <  k )
147137, 145, 146ltled 9213 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( abs `  x )  +  ( F `  x ) )  <_  k )
148 eluzle 10490 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  k
)  ->  k  <_  j )
149148adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  k  <_  j
)
150137, 145, 138, 147, 149letrd 9219 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( abs `  x )  +  ( F `  x ) )  <_  j )
151136, 137, 138, 143, 150letrd 9219 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( abs `  x
)  <_  j )
15284, 138absled 12225 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( abs `  x )  <_  j  <->  (
-u j  <_  x  /\  x  <_  j ) ) )
153151, 152mpbid 202 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( -u j  <_  x  /\  x  <_ 
j ) )
154153simpld 446 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  -u j  <_  x
)
155153simprd 450 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  x  <_  j
)
156138renegcld 9456 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  -u j  e.  RR )
157 elicc2 10967 . . . . . . . . . 10  |-  ( (
-u j  e.  RR  /\  j  e.  RR )  ->  ( x  e.  ( -u j [,] j )  <->  ( x  e.  RR  /\  -u j  <_  x  /\  x  <_ 
j ) ) )
158156, 138, 157syl2anc 643 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( x  e.  ( -u j [,] j )  <->  ( x  e.  RR  /\  -u j  <_  x  /\  x  <_ 
j ) ) )
15984, 154, 155, 158mpbir3and 1137 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  x  e.  (
-u j [,] j
) )
160 iftrue 3737 . . . . . . . 8  |-  ( x  e.  ( -u j [,] j )  ->  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_  j ,  ( j J x ) ,  j ) ,  0 )  =  if ( ( j J x )  <_  j ,  ( j J x ) ,  j ) )
161159, 160syl 16 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_  j ,  ( j J x ) ,  j ) ,  0 )  =  if ( ( j J x )  <_  j ,  ( j J x ) ,  j ) )
162 simpr 448 . . . . . . . . . . . . . . . 16  |-  ( ( m  =  j  /\  y  =  x )  ->  y  =  x )
163162fveq2d 5724 . . . . . . . . . . . . . . 15  |-  ( ( m  =  j  /\  y  =  x )  ->  ( F `  y
)  =  ( F `
 x ) )
164 simpl 444 . . . . . . . . . . . . . . . 16  |-  ( ( m  =  j  /\  y  =  x )  ->  m  =  j )
165164oveq2d 6089 . . . . . . . . . . . . . . 15  |-  ( ( m  =  j  /\  y  =  x )  ->  ( 2 ^ m
)  =  ( 2 ^ j ) )
166163, 165oveq12d 6091 . . . . . . . . . . . . . 14  |-  ( ( m  =  j  /\  y  =  x )  ->  ( ( F `  y )  x.  (
2 ^ m ) )  =  ( ( F `  x )  x.  ( 2 ^ j ) ) )
167166fveq2d 5724 . . . . . . . . . . . . 13  |-  ( ( m  =  j  /\  y  =  x )  ->  ( |_ `  (
( F `  y
)  x.  ( 2 ^ m ) ) )  =  ( |_
`  ( ( F `
 x )  x.  ( 2 ^ j
) ) ) )
168167, 165oveq12d 6091 . . . . . . . . . . . 12  |-  ( ( m  =  j  /\  y  =  x )  ->  ( ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) )  /  (
2 ^ m ) )  =  ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) ) )
169 ovex 6098 . . . . . . . . . . . 12  |-  ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) )  e. 
_V
170168, 3, 169ovmpt2a 6196 . . . . . . . . . . 11  |-  ( ( j  e.  NN  /\  x  e.  RR )  ->  ( j J x )  =  ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) ) )
17166, 84, 170syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( j J x )  =  ( ( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) ) )
172114, 90nndivred 10040 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( |_
`  ( ( F `
 x )  x.  ( 2 ^ j
) ) )  / 
( 2 ^ j
) )  e.  RR )
173 flle 11200 . . . . . . . . . . . . 13  |-  ( ( ( F `  x
)  x.  ( 2 ^ j ) )  e.  RR  ->  ( |_ `  ( ( F `
 x )  x.  ( 2 ^ j
) ) )  <_ 
( ( F `  x )  x.  (
2 ^ j ) ) )
174104, 173syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( |_ `  ( ( F `  x )  x.  (
2 ^ j ) ) )  <_  (
( F `  x
)  x.  ( 2 ^ j ) ) )
175 ledivmul2 9879 . . . . . . . . . . . . 13  |-  ( ( ( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  e.  RR  /\  ( F `  x )  e.  RR  /\  (
( 2 ^ j
)  e.  RR  /\  0  <  ( 2 ^ j ) ) )  ->  ( ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) )  <_ 
( F `  x
)  <->  ( |_ `  ( ( F `  x )  x.  (
2 ^ j ) ) )  <_  (
( F `  x
)  x.  ( 2 ^ j ) ) ) )
176114, 68, 91, 119, 175syl112anc 1188 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) )  <_ 
( F `  x
)  <->  ( |_ `  ( ( F `  x )  x.  (
2 ^ j ) ) )  <_  (
( F `  x
)  x.  ( 2 ^ j ) ) ) )
177174, 176mpbird 224 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( |_
`  ( ( F `
 x )  x.  ( 2 ^ j
) ) )  / 
( 2 ^ j
) )  <_  ( F `  x )
)
1789ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  x  e.  CC )
179178absge0d 12238 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  0  <_  ( abs `  x ) )
18068, 136addge02d 9607 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( 0  <_ 
( abs `  x
)  <->  ( F `  x )  <_  (
( abs `  x
)  +  ( F `
 x ) ) ) )
181179, 180mpbid 202 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( F `  x )  <_  (
( abs `  x
)  +  ( F `
 x ) ) )
18268, 137, 138, 181, 150letrd 9219 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( F `  x )  <_  j
)
183172, 68, 138, 177, 182letrd 9219 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( |_
`  ( ( F `
 x )  x.  ( 2 ^ j
) ) )  / 
( 2 ^ j
) )  <_  j
)
184171, 183eqbrtrd 4224 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( j J x )  <_  j
)
185 iftrue 3737 . . . . . . . . 9  |-  ( ( j J x )  <_  j  ->  if ( ( j J x )  <_  j ,  ( j J x ) ,  j )  =  ( j J x ) )
186184, 185syl 16 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  if ( ( j J x )  <_  j ,  ( j J x ) ,  j )  =  ( j J x ) )
187186, 171eqtrd 2467 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  if ( ( j J x )  <_  j ,  ( j J x ) ,  j )  =  ( ( |_ `  ( ( F `  x )  x.  (
2 ^ j ) ) )  /  (
2 ^ j ) ) )
188135, 161, 1873eqtrd 2471 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( G `  n ) `
 x ) ) `
 j )  =  ( ( |_ `  ( ( F `  x )  x.  (
2 ^ j ) ) )  /  (
2 ^ j ) ) )
189123, 67, 1883brtr4d 4234 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) ) `
 j )  <_ 
( ( n  e.  NN  |->  ( ( G `
 n ) `  x ) ) `  j ) )
190188, 177eqbrtrd 4224 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( G `  n ) `
 x ) ) `
 j )  <_ 
( F `  x
) )
19118, 20, 61, 63, 73, 86, 189, 190climsqz 12426 . . . 4  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  ->  ( n  e.  NN  |->  ( ( G `
 n ) `  x ) )  ~~>  ( F `
 x ) )
19217, 191rexlimddv 2826 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN  |->  ( ( G `  n ) `
 x ) )  ~~>  ( F `  x
) )
193192ralrimiva 2781 . 2  |-  ( ph  ->  A. x  e.  RR  ( n  e.  NN  |->  ( ( G `  n ) `  x
) )  ~~>  ( F `
 x ) )
19438mptex 5958 . . . 4  |-  ( m  e.  NN  |->  ( x  e.  RR  |->  if ( x  e.  ( -u m [,] m ) ,  if ( ( m J x )  <_  m ,  ( m J x ) ,  m ) ,  0 ) ) )  e. 
_V
1954, 194eqeltri 2505 . . 3  |-  G  e. 
_V
196 feq1 5568 . . . 4  |-  ( g  =  G  ->  (
g : NN --> dom  S.1  <->  G : NN --> dom  S.1 ) )
197 fveq1 5719 . . . . . . 7  |-  ( g  =  G  ->  (
g `  n )  =  ( G `  n ) )
198197breq2d 4216 . . . . . 6  |-  ( g  =  G  ->  (
0 p  o R  <_  ( g `  n )  <->  0 p  o R  <_  ( G `
 n ) ) )
199 fveq1 5719 . . . . . . 7  |-  ( g  =  G  ->  (
g `  ( n  +  1 ) )  =  ( G `  ( n  +  1
) ) )
200197, 199breq12d 4217 . . . . . 6  |-  ( g  =  G  ->  (
( g `  n
)  o R  <_ 
( g `  (
n  +  1 ) )  <->  ( G `  n )  o R  <_  ( G `  ( n  +  1
) ) ) )
201198, 200anbi12d 692 . . . . 5  |-  ( g  =  G  ->  (
( 0 p  o R  <_  ( g `  n )  /\  (
g `  n )  o R  <_  ( g `
 ( n  + 
1 ) ) )  <-> 
( 0 p  o R  <_  ( G `  n )  /\  ( G `  n )  o R  <_  ( G `
 ( n  + 
1 ) ) ) ) )
202201ralbidv 2717 . . . 4  |-  ( g  =  G  ->  ( A. n  e.  NN  ( 0 p  o R  <_  ( g `  n )  /\  (
g `  n )  o R  <_  ( g `
 ( n  + 
1 ) ) )  <->  A. n  e.  NN  ( 0 p  o R  <_  ( G `  n )  /\  ( G `  n )  o R  <_  ( G `
 ( n  + 
1 ) ) ) ) )
203197fveq1d 5722 . . . . . . 7  |-  ( g  =  G  ->  (
( g `  n
) `  x )  =  ( ( G `
 n ) `  x ) )
204203mpteq2dv 4288 . . . . . 6  |-  ( g  =  G  ->  (
n  e.  NN  |->  ( ( g `  n
) `  x )
)  =  ( n  e.  NN  |->  ( ( G `  n ) `
 x ) ) )
205204breq1d 4214 . . . . 5  |-  ( g  =  G  ->  (
( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( F `
 x )  <->  ( n  e.  NN  |->  ( ( G `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
206205ralbidv 2717 . . . 4  |-  ( g  =  G  ->  ( A. x  e.  RR  ( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( F `
 x )  <->  A. x  e.  RR  ( n  e.  NN  |->  ( ( G `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
207196, 202, 2063anbi123d 1254 . . 3  |-  ( g  =  G  ->  (
( g : NN --> dom  S.1  /\  A. n  e.  NN  ( 0 p  o R  <_  (
g `  n )  /\  ( g `  n
)  o R  <_ 
( g `  (
n  +  1 ) ) )  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( g `  n
) `  x )
)  ~~>  ( F `  x ) )  <->  ( G : NN --> dom  S.1  /\  A. n  e.  NN  (
0 p  o R  <_  ( G `  n )  /\  ( G `  n )  o R  <_  ( G `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( G `
 n ) `  x ) )  ~~>  ( F `
 x ) ) ) )
208195, 207spcev 3035 . 2  |-  ( ( G : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0 p  o R  <_  ( G `  n )  /\  ( G `  n )  o R  <_  ( G `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( G `
 n ) `  x ) )  ~~>  ( F `
 x ) )  ->  E. g ( g : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0 p  o R  <_  ( g `  n )  /\  (
g `  n )  o R  <_  ( g `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
2095, 7, 193, 208syl3anc 1184 1  |-  ( ph  ->  E. g ( g : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0 p  o R  <_  ( g `  n )  /\  (
g `  n )  o R  <_  ( g `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1550    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698   _Vcvv 2948   ifcif 3731   class class class wbr 4204    e. cmpt 4258   dom cdm 4870   -->wf 5442   ` cfv 5446  (class class class)co 6073    e. cmpt2 6075    o Rcofr 6296   CCcc 8980   RRcr 8981   0cc0 8982   1c1 8983    + caddc 8985    x. cmul 8987    +oocpnf 9109    < clt 9112    <_ cle 9113    - cmin 9283   -ucneg 9284    / cdiv 9669   NNcn 9992   2c2 10041   NN0cn0 10213   ZZcz 10274   ZZ>=cuz 10480   [,)cico 10910   [,]cicc 10911   |_cfl 11193   ^cexp 11374   abscabs 12031    ~~> cli 12270  MblFncmbf 19498   S.1citg1 19499   0 pc0p 19553
This theorem is referenced by:  mbfi1fseq  19605
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-ofr 6298  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-oi 7471  df-card 7818  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-ioo 10912  df-ico 10914  df-icc 10915  df-fz 11036  df-fzo 11128  df-fl 11194  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-clim 12274  df-rlim 12275  df-sum 12472  df-rest 13642  df-topgen 13659  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-top 16955  df-bases 16957  df-topon 16958  df-cmp 17442  df-ovol 19353  df-vol 19354  df-mbf 19504  df-itg1 19505  df-0p 19554
  Copyright terms: Public domain W3C validator