MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfid Unicode version

Theorem mbfid 19007
Description: The identity function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
mbfid  |-  ( A  e.  dom  vol  ->  (  _I  |`  A )  e. MblFn )

Proof of Theorem mbfid
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvresima 5178 . . . . 5  |-  ( `' (  _I  |`  A )
" x )  =  ( ( `'  _I  " x )  i^i  A
)
2 cnvi 5101 . . . . . . . 8  |-  `'  _I  =  _I
32imaeq1i 5025 . . . . . . 7  |-  ( `'  _I  " x )  =  (  _I  "
x )
4 imai 5043 . . . . . . 7  |-  (  _I  " x )  =  x
53, 4eqtri 2316 . . . . . 6  |-  ( `'  _I  " x )  =  x
65ineq1i 3379 . . . . 5  |-  ( ( `'  _I  " x )  i^i  A )  =  ( x  i^i  A
)
71, 6eqtri 2316 . . . 4  |-  ( `' (  _I  |`  A )
" x )  =  ( x  i^i  A
)
8 ioof 10757 . . . . . . 7  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
9 ffn 5405 . . . . . . 7  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
10 ovelrn 6012 . . . . . . 7  |-  ( (,) 
Fn  ( RR*  X.  RR* )  ->  ( x  e. 
ran  (,)  <->  E. y  e.  RR*  E. z  e.  RR*  x  =  ( y (,) z ) ) )
118, 9, 10mp2b 9 . . . . . 6  |-  ( x  e.  ran  (,)  <->  E. y  e.  RR*  E. z  e. 
RR*  x  =  ( y (,) z ) )
12 id 19 . . . . . . . . 9  |-  ( x  =  ( y (,) z )  ->  x  =  ( y (,) z ) )
13 ioombl 18938 . . . . . . . . 9  |-  ( y (,) z )  e. 
dom  vol
1412, 13syl6eqel 2384 . . . . . . . 8  |-  ( x  =  ( y (,) z )  ->  x  e.  dom  vol )
1514a1i 10 . . . . . . 7  |-  ( ( y  e.  RR*  /\  z  e.  RR* )  ->  (
x  =  ( y (,) z )  ->  x  e.  dom  vol )
)
1615rexlimivv 2685 . . . . . 6  |-  ( E. y  e.  RR*  E. z  e.  RR*  x  =  ( y (,) z )  ->  x  e.  dom  vol )
1711, 16sylbi 187 . . . . 5  |-  ( x  e.  ran  (,)  ->  x  e.  dom  vol )
18 id 19 . . . . 5  |-  ( A  e.  dom  vol  ->  A  e.  dom  vol )
19 inmbl 18915 . . . . 5  |-  ( ( x  e.  dom  vol  /\  A  e.  dom  vol )  ->  ( x  i^i 
A )  e.  dom  vol )
2017, 18, 19syl2anr 464 . . . 4  |-  ( ( A  e.  dom  vol  /\  x  e.  ran  (,) )  ->  ( x  i^i 
A )  e.  dom  vol )
217, 20syl5eqel 2380 . . 3  |-  ( ( A  e.  dom  vol  /\  x  e.  ran  (,) )  ->  ( `' (  _I  |`  A ) " x )  e. 
dom  vol )
2221ralrimiva 2639 . 2  |-  ( A  e.  dom  vol  ->  A. x  e.  ran  (,) ( `' (  _I  |`  A )
" x )  e. 
dom  vol )
23 f1oi 5527 . . . . 5  |-  (  _I  |`  A ) : A -1-1-onto-> A
24 f1of 5488 . . . . 5  |-  ( (  _I  |`  A ) : A -1-1-onto-> A  ->  (  _I  |`  A ) : A --> A )
2523, 24ax-mp 8 . . . 4  |-  (  _I  |`  A ) : A --> A
26 mblss 18906 . . . 4  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
27 fss 5413 . . . 4  |-  ( ( (  _I  |`  A ) : A --> A  /\  A  C_  RR )  -> 
(  _I  |`  A ) : A --> RR )
2825, 26, 27sylancr 644 . . 3  |-  ( A  e.  dom  vol  ->  (  _I  |`  A ) : A --> RR )
29 ismbf 19001 . . 3  |-  ( (  _I  |`  A ) : A --> RR  ->  (
(  _I  |`  A )  e. MblFn 
<-> 
A. x  e.  ran  (,) ( `' (  _I  |`  A ) " x
)  e.  dom  vol ) )
3028, 29syl 15 . 2  |-  ( A  e.  dom  vol  ->  ( (  _I  |`  A )  e. MblFn 
<-> 
A. x  e.  ran  (,) ( `' (  _I  |`  A ) " x
)  e.  dom  vol ) )
3122, 30mpbird 223 1  |-  ( A  e.  dom  vol  ->  (  _I  |`  A )  e. MblFn )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557    i^i cin 3164    C_ wss 3165   ~Pcpw 3638    _I cid 4320    X. cxp 4703   `'ccnv 4704   dom cdm 4705   ran crn 4706    |` cres 4707   "cima 4708    Fn wfn 5266   -->wf 5267   -1-1-onto->wf1o 5270  (class class class)co 5874   RRcr 8752   RR*cxr 8882   (,)cioo 10672   volcvol 18839  MblFncmbf 18985
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-xadd 10469  df-ioo 10676  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-rlim 11979  df-sum 12175  df-xmet 16389  df-met 16390  df-ovol 18840  df-vol 18841  df-mbf 18991
  Copyright terms: Public domain W3C validator