MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbflim Unicode version

Theorem mbflim 19548
Description: The pointwise limit of a sequence of measurable functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbflim.1  |-  Z  =  ( ZZ>= `  M )
mbflim.2  |-  ( ph  ->  M  e.  ZZ )
mbflim.4  |-  ( (
ph  /\  x  e.  A )  ->  (
n  e.  Z  |->  B )  ~~>  C )
mbflim.5  |-  ( (
ph  /\  n  e.  Z )  ->  (
x  e.  A  |->  B )  e. MblFn )
mbflim.6  |-  ( (
ph  /\  ( n  e.  Z  /\  x  e.  A ) )  ->  B  e.  V )
Assertion
Ref Expression
mbflim  |-  ( ph  ->  ( x  e.  A  |->  C )  e. MblFn )
Distinct variable groups:    x, n, A    ph, n, x    n, Z, x
Allowed substitution hints:    B( x, n)    C( x, n)    M( x, n)    V( x, n)

Proof of Theorem mbflim
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 mbflim.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 mbflim.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
3 mbflim.4 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
n  e.  Z  |->  B )  ~~>  C )
4 fvex 5733 . . . . . . 7  |-  ( ZZ>= `  M )  e.  _V
51, 4eqeltri 2505 . . . . . 6  |-  Z  e. 
_V
65mptex 5957 . . . . 5  |-  ( n  e.  Z  |->  ( Re
`  B ) )  e.  _V
76a1i 11 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
n  e.  Z  |->  ( Re `  B ) )  e.  _V )
82adantr 452 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  M  e.  ZZ )
9 mbflim.5 . . . . . . . 8  |-  ( (
ph  /\  n  e.  Z )  ->  (
x  e.  A  |->  B )  e. MblFn )
10 mbflim.6 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  Z  /\  x  e.  A ) )  ->  B  e.  V )
1110anassrs 630 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  Z )  /\  x  e.  A )  ->  B  e.  V )
129, 11mbfmptcl 19517 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  Z )  /\  x  e.  A )  ->  B  e.  CC )
1312an32s 780 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  B  e.  CC )
14 eqid 2435 . . . . . 6  |-  ( n  e.  Z  |->  B )  =  ( n  e.  Z  |->  B )
1513, 14fmptd 5884 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
n  e.  Z  |->  B ) : Z --> CC )
1615ffvelrnda 5861 . . . 4  |-  ( ( ( ph  /\  x  e.  A )  /\  k  e.  Z )  ->  (
( n  e.  Z  |->  B ) `  k
)  e.  CC )
17 simpr 448 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  n  e.  Z )
1813recld 11987 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  (
Re `  B )  e.  RR )
19 eqid 2435 . . . . . . . . . 10  |-  ( n  e.  Z  |->  ( Re
`  B ) )  =  ( n  e.  Z  |->  ( Re `  B ) )
2019fvmpt2 5803 . . . . . . . . 9  |-  ( ( n  e.  Z  /\  ( Re `  B )  e.  RR )  -> 
( ( n  e.  Z  |->  ( Re `  B ) ) `  n )  =  ( Re `  B ) )
2117, 18, 20syl2anc 643 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  (
( n  e.  Z  |->  ( Re `  B
) ) `  n
)  =  ( Re
`  B ) )
2214fvmpt2 5803 . . . . . . . . . 10  |-  ( ( n  e.  Z  /\  B  e.  CC )  ->  ( ( n  e.  Z  |->  B ) `  n )  =  B )
2317, 13, 22syl2anc 643 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  (
( n  e.  Z  |->  B ) `  n
)  =  B )
2423fveq2d 5723 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  (
Re `  ( (
n  e.  Z  |->  B ) `  n ) )  =  ( Re
`  B ) )
2521, 24eqtr4d 2470 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  (
( n  e.  Z  |->  ( Re `  B
) ) `  n
)  =  ( Re
`  ( ( n  e.  Z  |->  B ) `
 n ) ) )
2625ralrimiva 2781 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  A. n  e.  Z  ( (
n  e.  Z  |->  ( Re `  B ) ) `  n )  =  ( Re `  ( ( n  e.  Z  |->  B ) `  n ) ) )
27 nffvmpt1 5727 . . . . . . . 8  |-  F/_ n
( ( n  e.  Z  |->  ( Re `  B ) ) `  k )
28 nfcv 2571 . . . . . . . . 9  |-  F/_ n Re
29 nffvmpt1 5727 . . . . . . . . 9  |-  F/_ n
( ( n  e.  Z  |->  B ) `  k )
3028, 29nffv 5726 . . . . . . . 8  |-  F/_ n
( Re `  (
( n  e.  Z  |->  B ) `  k
) )
3127, 30nfeq 2578 . . . . . . 7  |-  F/ n
( ( n  e.  Z  |->  ( Re `  B ) ) `  k )  =  ( Re `  ( ( n  e.  Z  |->  B ) `  k ) )
32 nfv 1629 . . . . . . 7  |-  F/ k ( ( n  e.  Z  |->  ( Re `  B ) ) `  n )  =  ( Re `  ( ( n  e.  Z  |->  B ) `  n ) )
33 fveq2 5719 . . . . . . . 8  |-  ( k  =  n  ->  (
( n  e.  Z  |->  ( Re `  B
) ) `  k
)  =  ( ( n  e.  Z  |->  ( Re `  B ) ) `  n ) )
34 fveq2 5719 . . . . . . . . 9  |-  ( k  =  n  ->  (
( n  e.  Z  |->  B ) `  k
)  =  ( ( n  e.  Z  |->  B ) `  n ) )
3534fveq2d 5723 . . . . . . . 8  |-  ( k  =  n  ->  (
Re `  ( (
n  e.  Z  |->  B ) `  k ) )  =  ( Re
`  ( ( n  e.  Z  |->  B ) `
 n ) ) )
3633, 35eqeq12d 2449 . . . . . . 7  |-  ( k  =  n  ->  (
( ( n  e.  Z  |->  ( Re `  B ) ) `  k )  =  ( Re `  ( ( n  e.  Z  |->  B ) `  k ) )  <->  ( ( n  e.  Z  |->  ( Re
`  B ) ) `
 n )  =  ( Re `  (
( n  e.  Z  |->  B ) `  n
) ) ) )
3731, 32, 36cbvral 2920 . . . . . 6  |-  ( A. k  e.  Z  (
( n  e.  Z  |->  ( Re `  B
) ) `  k
)  =  ( Re
`  ( ( n  e.  Z  |->  B ) `
 k ) )  <->  A. n  e.  Z  ( ( n  e.  Z  |->  ( Re `  B ) ) `  n )  =  ( Re `  ( ( n  e.  Z  |->  B ) `  n ) ) )
3826, 37sylibr 204 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  A. k  e.  Z  ( (
n  e.  Z  |->  ( Re `  B ) ) `  k )  =  ( Re `  ( ( n  e.  Z  |->  B ) `  k ) ) )
3938r19.21bi 2796 . . . 4  |-  ( ( ( ph  /\  x  e.  A )  /\  k  e.  Z )  ->  (
( n  e.  Z  |->  ( Re `  B
) ) `  k
)  =  ( Re
`  ( ( n  e.  Z  |->  B ) `
 k ) ) )
401, 3, 7, 8, 16, 39climre 12387 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  (
n  e.  Z  |->  ( Re `  B ) )  ~~>  ( Re `  C ) )
4112ismbfcn2 19519 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  (
( x  e.  A  |->  B )  e. MblFn  <->  ( (
x  e.  A  |->  ( Re `  B ) )  e. MblFn  /\  (
x  e.  A  |->  ( Im `  B ) )  e. MblFn ) ) )
429, 41mpbid 202 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  (
( x  e.  A  |->  ( Re `  B
) )  e. MblFn  /\  (
x  e.  A  |->  ( Im `  B ) )  e. MblFn ) )
4342simpld 446 . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  (
x  e.  A  |->  ( Re `  B ) )  e. MblFn )
4412anasss 629 . . . 4  |-  ( (
ph  /\  ( n  e.  Z  /\  x  e.  A ) )  ->  B  e.  CC )
4544recld 11987 . . 3  |-  ( (
ph  /\  ( n  e.  Z  /\  x  e.  A ) )  -> 
( Re `  B
)  e.  RR )
461, 2, 40, 43, 45mbflimlem 19547 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  C
) )  e. MblFn )
475mptex 5957 . . . . 5  |-  ( n  e.  Z  |->  ( Im
`  B ) )  e.  _V
4847a1i 11 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
n  e.  Z  |->  ( Im `  B ) )  e.  _V )
4913imcld 11988 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  (
Im `  B )  e.  RR )
50 eqid 2435 . . . . . . . . . 10  |-  ( n  e.  Z  |->  ( Im
`  B ) )  =  ( n  e.  Z  |->  ( Im `  B ) )
5150fvmpt2 5803 . . . . . . . . 9  |-  ( ( n  e.  Z  /\  ( Im `  B )  e.  RR )  -> 
( ( n  e.  Z  |->  ( Im `  B ) ) `  n )  =  ( Im `  B ) )
5217, 49, 51syl2anc 643 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  (
( n  e.  Z  |->  ( Im `  B
) ) `  n
)  =  ( Im
`  B ) )
5323fveq2d 5723 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  (
Im `  ( (
n  e.  Z  |->  B ) `  n ) )  =  ( Im
`  B ) )
5452, 53eqtr4d 2470 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  n  e.  Z )  ->  (
( n  e.  Z  |->  ( Im `  B
) ) `  n
)  =  ( Im
`  ( ( n  e.  Z  |->  B ) `
 n ) ) )
5554ralrimiva 2781 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  A. n  e.  Z  ( (
n  e.  Z  |->  ( Im `  B ) ) `  n )  =  ( Im `  ( ( n  e.  Z  |->  B ) `  n ) ) )
56 nffvmpt1 5727 . . . . . . . 8  |-  F/_ n
( ( n  e.  Z  |->  ( Im `  B ) ) `  k )
57 nfcv 2571 . . . . . . . . 9  |-  F/_ n Im
5857, 29nffv 5726 . . . . . . . 8  |-  F/_ n
( Im `  (
( n  e.  Z  |->  B ) `  k
) )
5956, 58nfeq 2578 . . . . . . 7  |-  F/ n
( ( n  e.  Z  |->  ( Im `  B ) ) `  k )  =  ( Im `  ( ( n  e.  Z  |->  B ) `  k ) )
60 nfv 1629 . . . . . . 7  |-  F/ k ( ( n  e.  Z  |->  ( Im `  B ) ) `  n )  =  ( Im `  ( ( n  e.  Z  |->  B ) `  n ) )
61 fveq2 5719 . . . . . . . 8  |-  ( k  =  n  ->  (
( n  e.  Z  |->  ( Im `  B
) ) `  k
)  =  ( ( n  e.  Z  |->  ( Im `  B ) ) `  n ) )
6234fveq2d 5723 . . . . . . . 8  |-  ( k  =  n  ->  (
Im `  ( (
n  e.  Z  |->  B ) `  k ) )  =  ( Im
`  ( ( n  e.  Z  |->  B ) `
 n ) ) )
6361, 62eqeq12d 2449 . . . . . . 7  |-  ( k  =  n  ->  (
( ( n  e.  Z  |->  ( Im `  B ) ) `  k )  =  ( Im `  ( ( n  e.  Z  |->  B ) `  k ) )  <->  ( ( n  e.  Z  |->  ( Im
`  B ) ) `
 n )  =  ( Im `  (
( n  e.  Z  |->  B ) `  n
) ) ) )
6459, 60, 63cbvral 2920 . . . . . 6  |-  ( A. k  e.  Z  (
( n  e.  Z  |->  ( Im `  B
) ) `  k
)  =  ( Im
`  ( ( n  e.  Z  |->  B ) `
 k ) )  <->  A. n  e.  Z  ( ( n  e.  Z  |->  ( Im `  B ) ) `  n )  =  ( Im `  ( ( n  e.  Z  |->  B ) `  n ) ) )
6555, 64sylibr 204 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  A. k  e.  Z  ( (
n  e.  Z  |->  ( Im `  B ) ) `  k )  =  ( Im `  ( ( n  e.  Z  |->  B ) `  k ) ) )
6665r19.21bi 2796 . . . 4  |-  ( ( ( ph  /\  x  e.  A )  /\  k  e.  Z )  ->  (
( n  e.  Z  |->  ( Im `  B
) ) `  k
)  =  ( Im
`  ( ( n  e.  Z  |->  B ) `
 k ) ) )
671, 3, 48, 8, 16, 66climim 12388 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  (
n  e.  Z  |->  ( Im `  B ) )  ~~>  ( Im `  C ) )
6842simprd 450 . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  (
x  e.  A  |->  ( Im `  B ) )  e. MblFn )
6944imcld 11988 . . 3  |-  ( (
ph  /\  ( n  e.  Z  /\  x  e.  A ) )  -> 
( Im `  B
)  e.  RR )
701, 2, 67, 68, 69mbflimlem 19547 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  C
) )  e. MblFn )
71 climcl 12281 . . . 4  |-  ( ( n  e.  Z  |->  B )  ~~>  C  ->  C  e.  CC )
723, 71syl 16 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
7372ismbfcn2 19519 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e. MblFn  <->  ( ( x  e.  A  |->  ( Re `  C
) )  e. MblFn  /\  (
x  e.  A  |->  ( Im `  C ) )  e. MblFn ) ) )
7446, 70, 73mpbir2and 889 1  |-  ( ph  ->  ( x  e.  A  |->  C )  e. MblFn )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   _Vcvv 2948   class class class wbr 4204    e. cmpt 4258   ` cfv 5445   CCcc 8977   RRcr 8978   ZZcz 10271   ZZ>=cuz 10477   Recre 11890   Imcim 11891    ~~> cli 12266  MblFncmbf 19494
This theorem is referenced by:  mbfmullem2  19604  mbfulm  20310
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585  ax-cc 8304  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056  ax-pre-sup 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-disj 4175  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-of 6296  df-1st 6340  df-2nd 6341  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-2o 6716  df-oadd 6719  df-omul 6720  df-er 6896  df-map 7011  df-pm 7012  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-sup 7437  df-oi 7468  df-card 7815  df-acn 7818  df-cda 8037  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667  df-nn 9990  df-2 10047  df-3 10048  df-n0 10211  df-z 10272  df-uz 10478  df-q 10564  df-rp 10602  df-xadd 10700  df-ioo 10909  df-ioc 10910  df-ico 10911  df-icc 10912  df-fz 11033  df-fzo 11124  df-fl 11190  df-seq 11312  df-exp 11371  df-hash 11607  df-cj 11892  df-re 11893  df-im 11894  df-sqr 12028  df-abs 12029  df-limsup 12253  df-clim 12270  df-rlim 12271  df-sum 12468  df-xmet 16683  df-met 16684  df-ovol 19349  df-vol 19350  df-mbf 19500
  Copyright terms: Public domain W3C validator