MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmulc2re Unicode version

Theorem mbfmulc2re 19019
Description: Multiplication by a constant preserves measurability. (Contributed by Mario Carneiro, 15-Aug-2014.)
Hypotheses
Ref Expression
mbfmulc2re.1  |-  ( ph  ->  F  e. MblFn )
mbfmulc2re.2  |-  ( ph  ->  B  e.  RR )
mbfmulc2re.3  |-  ( ph  ->  F : A --> CC )
Assertion
Ref Expression
mbfmulc2re  |-  ( ph  ->  ( ( A  X.  { B } )  o F  x.  F )  e. MblFn )

Proof of Theorem mbfmulc2re
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 mbfmulc2re.3 . . . . 5  |-  ( ph  ->  F : A --> CC )
2 fdm 5409 . . . . 5  |-  ( F : A --> CC  ->  dom 
F  =  A )
31, 2syl 15 . . . 4  |-  ( ph  ->  dom  F  =  A )
4 mbfmulc2re.1 . . . . 5  |-  ( ph  ->  F  e. MblFn )
5 dmexg 4955 . . . . 5  |-  ( F  e. MblFn  ->  dom  F  e.  _V )
64, 5syl 15 . . . 4  |-  ( ph  ->  dom  F  e.  _V )
73, 6eqeltrrd 2371 . . 3  |-  ( ph  ->  A  e.  _V )
8 mbfmulc2re.2 . . . 4  |-  ( ph  ->  B  e.  RR )
98adantr 451 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
10 ffvelrn 5679 . . . 4  |-  ( ( F : A --> CC  /\  x  e.  A )  ->  ( F `  x
)  e.  CC )
111, 10sylan 457 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  e.  CC )
12 fconstmpt 4748 . . . 4  |-  ( A  X.  { B }
)  =  ( x  e.  A  |->  B )
1312a1i 10 . . 3  |-  ( ph  ->  ( A  X.  { B } )  =  ( x  e.  A  |->  B ) )
141feqmptd 5591 . . 3  |-  ( ph  ->  F  =  ( x  e.  A  |->  ( F `
 x ) ) )
157, 9, 11, 13, 14offval2 6111 . 2  |-  ( ph  ->  ( ( A  X.  { B } )  o F  x.  F )  =  ( x  e.  A  |->  ( B  x.  ( F `  x ) ) ) )
169, 11remul2d 11728 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  ( B  x.  ( F `  x
) ) )  =  ( B  x.  (
Re `  ( F `  x ) ) ) )
1716mpteq2dva 4122 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  ( B  x.  ( F `  x ) ) ) )  =  ( x  e.  A  |->  ( B  x.  ( Re `  ( F `  x ) ) ) ) )
1811recld 11695 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  ( F `  x ) )  e.  RR )
19 eqidd 2297 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  ( F `  x )
) )  =  ( x  e.  A  |->  ( Re `  ( F `
 x ) ) ) )
207, 9, 18, 13, 19offval2 6111 . . . . 5  |-  ( ph  ->  ( ( A  X.  { B } )  o F  x.  ( x  e.  A  |->  ( Re
`  ( F `  x ) ) ) )  =  ( x  e.  A  |->  ( B  x.  ( Re `  ( F `  x ) ) ) ) )
2117, 20eqtr4d 2331 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  ( B  x.  ( F `  x ) ) ) )  =  ( ( A  X.  { B } )  o F  x.  ( x  e.  A  |->  ( Re `  ( F `  x ) ) ) ) )
2214, 4eqeltrrd 2371 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  ( F `  x
) )  e. MblFn )
2311ismbfcn2 19010 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  |->  ( F `  x ) )  e. MblFn  <->  ( ( x  e.  A  |->  ( Re `  ( F `  x )
) )  e. MblFn  /\  (
x  e.  A  |->  ( Im `  ( F `
 x ) ) )  e. MblFn ) ) )
2422, 23mpbid 201 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  ( Re `  ( F `  x ) ) )  e. MblFn  /\  (
x  e.  A  |->  ( Im `  ( F `
 x ) ) )  e. MblFn ) )
2524simpld 445 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  ( F `  x )
) )  e. MblFn )
26 eqid 2296 . . . . . 6  |-  ( x  e.  A  |->  ( Re
`  ( F `  x ) ) )  =  ( x  e.  A  |->  ( Re `  ( F `  x ) ) )
2718, 26fmptd 5700 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  ( F `  x )
) ) : A --> RR )
2825, 8, 27mbfmulc2lem 19018 . . . 4  |-  ( ph  ->  ( ( A  X.  { B } )  o F  x.  ( x  e.  A  |->  ( Re
`  ( F `  x ) ) ) )  e. MblFn )
2921, 28eqeltrd 2370 . . 3  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  ( B  x.  ( F `  x ) ) ) )  e. MblFn )
309, 11immul2d 11729 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  ( B  x.  ( F `  x
) ) )  =  ( B  x.  (
Im `  ( F `  x ) ) ) )
3130mpteq2dva 4122 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  ( B  x.  ( F `  x ) ) ) )  =  ( x  e.  A  |->  ( B  x.  ( Im `  ( F `  x ) ) ) ) )
3211imcld 11696 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  ( F `  x ) )  e.  RR )
33 eqidd 2297 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  ( F `  x )
) )  =  ( x  e.  A  |->  ( Im `  ( F `
 x ) ) ) )
347, 9, 32, 13, 33offval2 6111 . . . . 5  |-  ( ph  ->  ( ( A  X.  { B } )  o F  x.  ( x  e.  A  |->  ( Im
`  ( F `  x ) ) ) )  =  ( x  e.  A  |->  ( B  x.  ( Im `  ( F `  x ) ) ) ) )
3531, 34eqtr4d 2331 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  ( B  x.  ( F `  x ) ) ) )  =  ( ( A  X.  { B } )  o F  x.  ( x  e.  A  |->  ( Im `  ( F `  x ) ) ) ) )
3624simprd 449 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  ( F `  x )
) )  e. MblFn )
37 eqid 2296 . . . . . 6  |-  ( x  e.  A  |->  ( Im
`  ( F `  x ) ) )  =  ( x  e.  A  |->  ( Im `  ( F `  x ) ) )
3832, 37fmptd 5700 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  ( F `  x )
) ) : A --> RR )
3936, 8, 38mbfmulc2lem 19018 . . . 4  |-  ( ph  ->  ( ( A  X.  { B } )  o F  x.  ( x  e.  A  |->  ( Im
`  ( F `  x ) ) ) )  e. MblFn )
4035, 39eqeltrd 2370 . . 3  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  ( B  x.  ( F `  x ) ) ) )  e. MblFn )
418recnd 8877 . . . . . 6  |-  ( ph  ->  B  e.  CC )
4241adantr 451 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
4342, 11mulcld 8871 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( B  x.  ( F `  x ) )  e.  CC )
4443ismbfcn2 19010 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  ( B  x.  ( F `  x ) ) )  e. MblFn  <->  ( (
x  e.  A  |->  ( Re `  ( B  x.  ( F `  x ) ) ) )  e. MblFn  /\  (
x  e.  A  |->  ( Im `  ( B  x.  ( F `  x ) ) ) )  e. MblFn ) ) )
4529, 40, 44mpbir2and 888 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( B  x.  ( F `  x )
) )  e. MblFn )
4615, 45eqeltrd 2370 1  |-  ( ph  ->  ( ( A  X.  { B } )  o F  x.  F )  e. MblFn )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801   {csn 3653    e. cmpt 4093    X. cxp 4703   dom cdm 4705   -->wf 5267   ` cfv 5271  (class class class)co 5874    o Fcof 6092   CCcc 8751   RRcr 8752    x. cmul 8758   Recre 11598   Imcim 11599  MblFncmbf 18985
This theorem is referenced by:  mbfneg  19021  mbfmulc2  19034  itgmulc2nclem2  25018  itgmulc2nc  25019  itgabsnc  25020
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-xadd 10469  df-ioo 10676  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175  df-xmet 16389  df-met 16390  df-ovol 18840  df-vol 18841  df-mbf 18991
  Copyright terms: Public domain W3C validator