MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfposb Unicode version

Theorem mbfposb 19533
Description: A function is measurable iff its positive and negative parts are measurable. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypothesis
Ref Expression
mbfpos.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
Assertion
Ref Expression
mbfposb  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. MblFn  <->  ( ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) )  e. MblFn  /\  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn ) ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    B( x)

Proof of Theorem mbfposb
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfcv 2571 . . . . . . . . 9  |-  F/_ x
0
2 nfcv 2571 . . . . . . . . 9  |-  F/_ x  <_
3 nffvmpt1 5727 . . . . . . . . 9  |-  F/_ x
( ( x  e.  A  |->  B ) `  y )
41, 2, 3nfbr 4248 . . . . . . . 8  |-  F/ x
0  <_  ( (
x  e.  A  |->  B ) `  y )
54, 3, 1nfif 3755 . . . . . . 7  |-  F/_ x if ( 0  <_  (
( x  e.  A  |->  B ) `  y
) ,  ( ( x  e.  A  |->  B ) `  y ) ,  0 )
6 nfcv 2571 . . . . . . 7  |-  F/_ y if ( 0  <_  (
( x  e.  A  |->  B ) `  x
) ,  ( ( x  e.  A  |->  B ) `  x ) ,  0 )
7 fveq2 5719 . . . . . . . . 9  |-  ( y  =  x  ->  (
( x  e.  A  |->  B ) `  y
)  =  ( ( x  e.  A  |->  B ) `  x ) )
87breq2d 4216 . . . . . . . 8  |-  ( y  =  x  ->  (
0  <_  ( (
x  e.  A  |->  B ) `  y )  <->  0  <_  ( (
x  e.  A  |->  B ) `  x ) ) )
9 eqidd 2436 . . . . . . . 8  |-  ( y  =  x  ->  0  =  0 )
108, 7, 9ifbieq12d 3753 . . . . . . 7  |-  ( y  =  x  ->  if ( 0  <_  (
( x  e.  A  |->  B ) `  y
) ,  ( ( x  e.  A  |->  B ) `  y ) ,  0 )  =  if ( 0  <_ 
( ( x  e.  A  |->  B ) `  x ) ,  ( ( x  e.  A  |->  B ) `  x
) ,  0 ) )
115, 6, 10cbvmpt 4291 . . . . . 6  |-  ( y  e.  A  |->  if ( 0  <_  ( (
x  e.  A  |->  B ) `  y ) ,  ( ( x  e.  A  |->  B ) `
 y ) ,  0 ) )  =  ( x  e.  A  |->  if ( 0  <_ 
( ( x  e.  A  |->  B ) `  x ) ,  ( ( x  e.  A  |->  B ) `  x
) ,  0 ) )
12 simpr 448 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
13 mbfpos.1 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
14 eqid 2435 . . . . . . . . . . 11  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
1514fvmpt2 5803 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  B  e.  RR )  ->  ( ( x  e.  A  |->  B ) `  x )  =  B )
1612, 13, 15syl2anc 643 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  B ) `  x
)  =  B )
1716breq2d 4216 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
0  <_  ( (
x  e.  A  |->  B ) `  x )  <->  0  <_  B )
)
18 eqidd 2436 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  0  =  0 )
1917, 16, 18ifbieq12d 3753 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  (
( x  e.  A  |->  B ) `  x
) ,  ( ( x  e.  A  |->  B ) `  x ) ,  0 )  =  if ( 0  <_  B ,  B , 
0 ) )
2019mpteq2dva 4287 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_ 
( ( x  e.  A  |->  B ) `  x ) ,  ( ( x  e.  A  |->  B ) `  x
) ,  0 ) )  =  ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) )
2111, 20syl5eq 2479 . . . . 5  |-  ( ph  ->  ( y  e.  A  |->  if ( 0  <_ 
( ( x  e.  A  |->  B ) `  y ) ,  ( ( x  e.  A  |->  B ) `  y
) ,  0 ) )  =  ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) )
2221adantr 452 . . . 4  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
y  e.  A  |->  if ( 0  <_  (
( x  e.  A  |->  B ) `  y
) ,  ( ( x  e.  A  |->  B ) `  y ) ,  0 ) )  =  ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) )
2313, 14fmptd 5884 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  B ) : A --> RR )
2423adantr 452 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
x  e.  A  |->  B ) : A --> RR )
2524ffvelrnda 5861 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  A  |->  B )  e. MblFn )  /\  y  e.  A )  ->  ( ( x  e.  A  |->  B ) `  y )  e.  RR )
26 nfcv 2571 . . . . . . . . 9  |-  F/_ y
( ( x  e.  A  |->  B ) `  x )
273, 26, 7cbvmpt 4291 . . . . . . . 8  |-  ( y  e.  A  |->  ( ( x  e.  A  |->  B ) `  y ) )  =  ( x  e.  A  |->  ( ( x  e.  A  |->  B ) `  x ) )
2816mpteq2dva 4287 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( ( x  e.  A  |->  B ) `  x ) )  =  ( x  e.  A  |->  B ) )
2927, 28syl5eq 2479 . . . . . . 7  |-  ( ph  ->  ( y  e.  A  |->  ( ( x  e.  A  |->  B ) `  y ) )  =  ( x  e.  A  |->  B ) )
3029eleq1d 2501 . . . . . 6  |-  ( ph  ->  ( ( y  e.  A  |->  ( ( x  e.  A  |->  B ) `
 y ) )  e. MblFn 
<->  ( x  e.  A  |->  B )  e. MblFn )
)
3130biimpar 472 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
y  e.  A  |->  ( ( x  e.  A  |->  B ) `  y
) )  e. MblFn )
3225, 31mbfpos 19531 . . . 4  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
y  e.  A  |->  if ( 0  <_  (
( x  e.  A  |->  B ) `  y
) ,  ( ( x  e.  A  |->  B ) `  y ) ,  0 ) )  e. MblFn )
3322, 32eqeltrrd 2510 . . 3  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e. MblFn )
343nfneg 9291 . . . . . . . . 9  |-  F/_ x -u ( ( x  e.  A  |->  B ) `  y )
351, 2, 34nfbr 4248 . . . . . . . 8  |-  F/ x
0  <_  -u ( ( x  e.  A  |->  B ) `  y )
3635, 34, 1nfif 3755 . . . . . . 7  |-  F/_ x if ( 0  <_  -u (
( x  e.  A  |->  B ) `  y
) ,  -u (
( x  e.  A  |->  B ) `  y
) ,  0 )
37 nfcv 2571 . . . . . . 7  |-  F/_ y if ( 0  <_  -u (
( x  e.  A  |->  B ) `  x
) ,  -u (
( x  e.  A  |->  B ) `  x
) ,  0 )
387negeqd 9289 . . . . . . . . 9  |-  ( y  =  x  ->  -u (
( x  e.  A  |->  B ) `  y
)  =  -u (
( x  e.  A  |->  B ) `  x
) )
3938breq2d 4216 . . . . . . . 8  |-  ( y  =  x  ->  (
0  <_  -u ( ( x  e.  A  |->  B ) `  y )  <->  0  <_  -u ( ( x  e.  A  |->  B ) `  x ) ) )
4039, 38, 9ifbieq12d 3753 . . . . . . 7  |-  ( y  =  x  ->  if ( 0  <_  -u (
( x  e.  A  |->  B ) `  y
) ,  -u (
( x  e.  A  |->  B ) `  y
) ,  0 )  =  if ( 0  <_  -u ( ( x  e.  A  |->  B ) `
 x ) , 
-u ( ( x  e.  A  |->  B ) `
 x ) ,  0 ) )
4136, 37, 40cbvmpt 4291 . . . . . 6  |-  ( y  e.  A  |->  if ( 0  <_  -u ( ( x  e.  A  |->  B ) `  y ) ,  -u ( ( x  e.  A  |->  B ) `
 y ) ,  0 ) )  =  ( x  e.  A  |->  if ( 0  <_  -u ( ( x  e.  A  |->  B ) `  x ) ,  -u ( ( x  e.  A  |->  B ) `  x ) ,  0 ) )
4216negeqd 9289 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  -u (
( x  e.  A  |->  B ) `  x
)  =  -u B
)
4342breq2d 4216 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
0  <_  -u ( ( x  e.  A  |->  B ) `  x )  <->  0  <_  -u B ) )
4443, 42, 18ifbieq12d 3753 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u (
( x  e.  A  |->  B ) `  x
) ,  -u (
( x  e.  A  |->  B ) `  x
) ,  0 )  =  if ( 0  <_  -u B ,  -u B ,  0 ) )
4544mpteq2dva 4287 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  -u ( ( x  e.  A  |->  B ) `  x ) ,  -u ( ( x  e.  A  |->  B ) `  x ) ,  0 ) )  =  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) )
4641, 45syl5eq 2479 . . . . 5  |-  ( ph  ->  ( y  e.  A  |->  if ( 0  <_  -u ( ( x  e.  A  |->  B ) `  y ) ,  -u ( ( x  e.  A  |->  B ) `  y ) ,  0 ) )  =  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) )
4746adantr 452 . . . 4  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
y  e.  A  |->  if ( 0  <_  -u (
( x  e.  A  |->  B ) `  y
) ,  -u (
( x  e.  A  |->  B ) `  y
) ,  0 ) )  =  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) )
4825renegcld 9453 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  A  |->  B )  e. MblFn )  /\  y  e.  A )  -> 
-u ( ( x  e.  A  |->  B ) `
 y )  e.  RR )
4925, 31mbfneg 19530 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
y  e.  A  |->  -u ( ( x  e.  A  |->  B ) `  y ) )  e. MblFn
)
5048, 49mbfpos 19531 . . . 4  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
y  e.  A  |->  if ( 0  <_  -u (
( x  e.  A  |->  B ) `  y
) ,  -u (
( x  e.  A  |->  B ) `  y
) ,  0 ) )  e. MblFn )
5147, 50eqeltrrd 2510 . . 3  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn )
5233, 51jca 519 . 2  |-  ( (
ph  /\  ( x  e.  A  |->  B )  e. MblFn )  ->  (
( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) )  e. MblFn  /\  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn ) )
5329adantr 452 . . 3  |-  ( (
ph  /\  ( (
x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e. MblFn  /\  (
x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn )
)  ->  ( y  e.  A  |->  ( ( x  e.  A  |->  B ) `  y ) )  =  ( x  e.  A  |->  B ) )
5423ffvelrnda 5861 . . . . 5  |-  ( (
ph  /\  y  e.  A )  ->  (
( x  e.  A  |->  B ) `  y
)  e.  RR )
5554adantlr 696 . . . 4  |-  ( ( ( ph  /\  (
( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) )  e. MblFn  /\  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn ) )  /\  y  e.  A )  ->  ( ( x  e.  A  |->  B ) `  y )  e.  RR )
5621adantr 452 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e. MblFn  /\  (
x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn )
)  ->  ( y  e.  A  |->  if ( 0  <_  ( (
x  e.  A  |->  B ) `  y ) ,  ( ( x  e.  A  |->  B ) `
 y ) ,  0 ) )  =  ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) )
57 simprl 733 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e. MblFn  /\  (
x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn )
)  ->  ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e. MblFn )
5856, 57eqeltrd 2509 . . . 4  |-  ( (
ph  /\  ( (
x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e. MblFn  /\  (
x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn )
)  ->  ( y  e.  A  |->  if ( 0  <_  ( (
x  e.  A  |->  B ) `  y ) ,  ( ( x  e.  A  |->  B ) `
 y ) ,  0 ) )  e. MblFn
)
5946adantr 452 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e. MblFn  /\  (
x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn )
)  ->  ( y  e.  A  |->  if ( 0  <_  -u ( ( x  e.  A  |->  B ) `  y ) ,  -u ( ( x  e.  A  |->  B ) `
 y ) ,  0 ) )  =  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) )
60 simprr 734 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e. MblFn  /\  (
x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn )
)  ->  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn )
6159, 60eqeltrd 2509 . . . 4  |-  ( (
ph  /\  ( (
x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e. MblFn  /\  (
x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn )
)  ->  ( y  e.  A  |->  if ( 0  <_  -u ( ( x  e.  A  |->  B ) `  y ) ,  -u ( ( x  e.  A  |->  B ) `
 y ) ,  0 ) )  e. MblFn
)
6255, 58, 61mbfposr 19532 . . 3  |-  ( (
ph  /\  ( (
x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e. MblFn  /\  (
x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn )
)  ->  ( y  e.  A  |->  ( ( x  e.  A  |->  B ) `  y ) )  e. MblFn )
6353, 62eqeltrrd 2510 . 2  |-  ( (
ph  /\  ( (
x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  e. MblFn  /\  (
x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn )
)  ->  ( x  e.  A  |->  B )  e. MblFn )
6452, 63impbida 806 1  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. MblFn  <->  ( ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) )  e. MblFn  /\  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   ifcif 3731   class class class wbr 4204    e. cmpt 4258   -->wf 5441   ` cfv 5445   RRcr 8978   0cc0 8979    <_ cle 9110   -ucneg 9281  MblFncmbf 19494
This theorem is referenced by:  iblre  19673
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056  ax-pre-sup 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-of 6296  df-1st 6340  df-2nd 6341  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-2o 6716  df-oadd 6719  df-er 6896  df-map 7011  df-pm 7012  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-sup 7437  df-oi 7468  df-card 7815  df-cda 8037  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667  df-nn 9990  df-2 10047  df-3 10048  df-n0 10211  df-z 10272  df-uz 10478  df-q 10564  df-rp 10602  df-xadd 10700  df-ioo 10909  df-ico 10911  df-icc 10912  df-fz 11033  df-fzo 11124  df-fl 11190  df-seq 11312  df-exp 11371  df-hash 11607  df-cj 11892  df-re 11893  df-im 11894  df-sqr 12028  df-abs 12029  df-clim 12270  df-sum 12468  df-xmet 16683  df-met 16684  df-ovol 19349  df-vol 19350  df-mbf 19500
  Copyright terms: Public domain W3C validator