MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfposr Structured version   Unicode version

Theorem mbfposr 19544
Description: Converse to mbfpos 19543. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
mbfpos.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
mbfposr.2  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) )  e. MblFn
)
mbfposr.3  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn )
Assertion
Ref Expression
mbfposr  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    B( x)

Proof of Theorem mbfposr
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 mbfpos.1 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
2 eqid 2436 . . 3  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
31, 2fmptd 5893 . 2  |-  ( ph  ->  ( x  e.  A  |->  B ) : A --> RR )
4 mbfposr.2 . . 3  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) )  e. MblFn
)
5 0re 9091 . . . 4  |-  0  e.  RR
6 ifcl 3775 . . . 4  |-  ( ( B  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  B ,  B , 
0 )  e.  RR )
71, 5, 6sylancl 644 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  B ,  B ,  0 )  e.  RR )
84, 7mbfdm2 19530 . 2  |-  ( ph  ->  A  e.  dom  vol )
9 simplr 732 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  y  <  0 )
10 simpllr 736 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  y  e.  RR )
1110lt0neg1d 9596 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  (
y  <  0  <->  0  <  -u y ) )
129, 11mpbid 202 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  0  <  -u y )
1312biantrurd 495 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  ( -u B  <  -u y  <->  ( 0  <  -u y  /\  -u B  <  -u y
) ) )
14 simpll 731 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <  0 )  ->  ph )
1514, 1sylan 458 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  B  e.  RR )
1610, 15ltnegd 9604 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  (
y  <  B  <->  -u B  <  -u y ) )
175a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  0  e.  RR )
1815renegcld 9464 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  -u B  e.  RR )
1910renegcld 9464 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  -u y  e.  RR )
20 maxlt 10780 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  -u B  e.  RR  /\  -u y  e.  RR )  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  <  -u y  <->  ( 0  <  -u y  /\  -u B  <  -u y ) ) )
2117, 18, 19, 20syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  <  -u y  <->  ( 0  <  -u y  /\  -u B  <  -u y
) ) )
2213, 16, 213bitr4rd 278 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  <  -u y  <->  y  <  B ) )
231renegcld 9464 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  -u B  e.  RR )
24 ifcl 3775 . . . . . . . . . . . . . 14  |-  ( (
-u B  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR )
2523, 5, 24sylancl 644 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR )
2614, 25sylan 458 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR )
2726biantrurd 495 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  <  -u y  <->  ( if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR  /\  if ( 0  <_  -u B ,  -u B ,  0 )  <  -u y ) ) )
2815biantrurd 495 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  (
y  <  B  <->  ( B  e.  RR  /\  y  < 
B ) ) )
2922, 27, 283bitr3d 275 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  (
( if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR  /\  if ( 0  <_  -u B ,  -u B ,  0 )  <  -u y
)  <->  ( B  e.  RR  /\  y  < 
B ) ) )
3019rexrd 9134 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  -u y  e.  RR* )
31 elioomnf 10999 . . . . . . . . . . 11  |-  ( -u y  e.  RR*  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  e.  (  -oo (,) -u y )  <->  ( if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR  /\  if ( 0  <_  -u B ,  -u B ,  0 )  <  -u y
) ) )
3230, 31syl 16 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  e.  (  -oo (,) -u y )  <->  ( if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR  /\  if ( 0  <_  -u B ,  -u B ,  0 )  <  -u y
) ) )
3310rexrd 9134 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  y  e.  RR* )
34 elioopnf 10998 . . . . . . . . . . 11  |-  ( y  e.  RR*  ->  ( B  e.  ( y (,) 
+oo )  <->  ( B  e.  RR  /\  y  < 
B ) ) )
3533, 34syl 16 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  ( B  e.  ( y (,)  +oo )  <->  ( B  e.  RR  /\  y  < 
B ) ) )
3629, 32, 353bitr4d 277 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  e.  (  -oo (,) -u y )  <->  B  e.  ( y (,)  +oo ) ) )
37 simpr 448 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
38 eqid 2436 . . . . . . . . . . . . 13  |-  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  =  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )
3938fvmpt2 5812 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR )  ->  ( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `  x )  =  if ( 0  <_  -u B ,  -u B ,  0 ) )
4037, 25, 39syl2anc 643 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `
 x )  =  if ( 0  <_  -u B ,  -u B ,  0 ) )
4140eleq1d 2502 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `  x )  e.  (  -oo (,) -u y )  <->  if (
0  <_  -u B ,  -u B ,  0 )  e.  (  -oo (,) -u y ) ) )
4214, 41sylan 458 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `  x )  e.  (  -oo (,) -u y )  <->  if (
0  <_  -u B ,  -u B ,  0 )  e.  (  -oo (,) -u y ) ) )
432fvmpt2 5812 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  B  e.  RR )  ->  ( ( x  e.  A  |->  B ) `  x )  =  B )
4437, 1, 43syl2anc 643 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  B ) `  x
)  =  B )
4544eleq1d 2502 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  B ) `  x )  e.  ( y (,)  +oo )  <->  B  e.  ( y (,) 
+oo ) ) )
4614, 45sylan 458 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  B ) `  x )  e.  ( y (,)  +oo )  <->  B  e.  ( y (,) 
+oo ) ) )
4736, 42, 463bitr4d 277 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <  0
)  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `  x )  e.  (  -oo (,) -u y )  <->  ( (
x  e.  A  |->  B ) `  x )  e.  ( y (,) 
+oo ) ) )
4847pm5.32da 623 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <  0 )  ->  (
( x  e.  A  /\  ( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `  x )  e.  (  -oo (,) -u y ) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  B ) `  x
)  e.  ( y (,)  +oo ) ) ) )
4925, 38fmptd 5893 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) : A --> RR )
50 ffn 5591 . . . . . . . . 9  |-  ( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) : A --> RR  ->  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  Fn  A )
51 elpreima 5850 . . . . . . . . 9  |-  ( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  Fn  A  ->  ( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " (  -oo (,) -u y ) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `
 x )  e.  (  -oo (,) -u y
) ) ) )
5249, 50, 513syl 19 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " (  -oo (,) -u y ) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `
 x )  e.  (  -oo (,) -u y
) ) ) )
5352ad2antrr 707 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <  0 )  ->  (
x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )
" (  -oo (,) -u y ) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `
 x )  e.  (  -oo (,) -u y
) ) ) )
54 ffn 5591 . . . . . . . . 9  |-  ( ( x  e.  A  |->  B ) : A --> RR  ->  ( x  e.  A  |->  B )  Fn  A )
55 elpreima 5850 . . . . . . . . 9  |-  ( ( x  e.  A  |->  B )  Fn  A  -> 
( x  e.  ( `' ( x  e.  A  |->  B ) "
( y (,)  +oo ) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  B ) `  x
)  e.  ( y (,)  +oo ) ) ) )
563, 54, 553syl 19 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( `' ( x  e.  A  |->  B ) "
( y (,)  +oo ) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  B ) `  x
)  e.  ( y (,)  +oo ) ) ) )
5756ad2antrr 707 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <  0 )  ->  (
x  e.  ( `' ( x  e.  A  |->  B ) " (
y (,)  +oo ) )  <-> 
( x  e.  A  /\  ( ( x  e.  A  |->  B ) `  x )  e.  ( y (,)  +oo )
) ) )
5848, 53, 573bitr4d 277 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <  0 )  ->  (
x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )
" (  -oo (,) -u y ) )  <->  x  e.  ( `' ( x  e.  A  |->  B ) "
( y (,)  +oo ) ) ) )
5958alrimiv 1641 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <  0 )  ->  A. x
( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " (  -oo (,) -u y ) )  <->  x  e.  ( `' ( x  e.  A  |->  B ) "
( y (,)  +oo ) ) ) )
60 nfmpt1 4298 . . . . . . . 8  |-  F/_ x
( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )
6160nfcnv 5051 . . . . . . 7  |-  F/_ x `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )
62 nfcv 2572 . . . . . . 7  |-  F/_ x
(  -oo (,) -u y
)
6361, 62nfima 5211 . . . . . 6  |-  F/_ x
( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " (  -oo (,) -u y ) )
64 nfmpt1 4298 . . . . . . . 8  |-  F/_ x
( x  e.  A  |->  B )
6564nfcnv 5051 . . . . . . 7  |-  F/_ x `' ( x  e.  A  |->  B )
66 nfcv 2572 . . . . . . 7  |-  F/_ x
( y (,)  +oo )
6765, 66nfima 5211 . . . . . 6  |-  F/_ x
( `' ( x  e.  A  |->  B )
" ( y (,) 
+oo ) )
6863, 67cleqf 2596 . . . . 5  |-  ( ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " (  -oo (,) -u y ) )  =  ( `' ( x  e.  A  |->  B )
" ( y (,) 
+oo ) )  <->  A. x
( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " (  -oo (,) -u y ) )  <->  x  e.  ( `' ( x  e.  A  |->  B ) "
( y (,)  +oo ) ) ) )
6959, 68sylibr 204 . . . 4  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <  0 )  ->  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " (  -oo (,) -u y ) )  =  ( `' ( x  e.  A  |->  B )
" ( y (,) 
+oo ) ) )
70 mbfposr.3 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn )
71 mbfima 19524 . . . . . 6  |-  ( ( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn  /\  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) : A --> RR )  ->  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " (  -oo (,) -u y ) )  e.  dom  vol )
7270, 49, 71syl2anc 643 . . . . 5  |-  ( ph  ->  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " (  -oo (,) -u y ) )  e. 
dom  vol )
7372ad2antrr 707 . . . 4  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <  0 )  ->  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " (  -oo (,) -u y ) )  e. 
dom  vol )
7469, 73eqeltrrd 2511 . . 3  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <  0 )  ->  ( `' ( x  e.  A  |->  B ) "
( y (,)  +oo ) )  e.  dom  vol )
755a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  0  e.  RR )
76 simpll 731 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  ->  ph )
7776, 1sylan 458 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  B  e.  RR )
78 simpllr 736 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  y  e.  RR )
79 maxle 10778 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR  /\  B  e.  RR  /\  y  e.  RR )  ->  ( if ( 0  <_  B ,  B ,  0 )  <_  y  <->  ( 0  <_  y  /\  B  <_  y ) ) )
8075, 77, 78, 79syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( if ( 0  <_  B ,  B ,  0 )  <_  y  <->  ( 0  <_  y  /\  B  <_  y ) ) )
81 simplr 732 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  0  <_  y )
8281biantrurd 495 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( B  <_  y  <->  ( 0  <_ 
y  /\  B  <_  y ) ) )
8380, 82bitr4d 248 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( if ( 0  <_  B ,  B ,  0 )  <_  y  <->  B  <_  y ) )
8483notbid 286 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( -.  if ( 0  <_  B ,  B ,  0 )  <_  y  <->  -.  B  <_  y ) )
8577, 5, 6sylancl 644 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  if (
0  <_  B ,  B ,  0 )  e.  RR )
8678, 85ltnled 9220 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( y  <  if ( 0  <_  B ,  B , 
0 )  <->  -.  if ( 0  <_  B ,  B ,  0 )  <_  y ) )
8778, 77ltnled 9220 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( y  <  B  <->  -.  B  <_  y ) )
8884, 86, 873bitr4d 277 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( y  <  if ( 0  <_  B ,  B , 
0 )  <->  y  <  B ) )
8985biantrurd 495 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( y  <  if ( 0  <_  B ,  B , 
0 )  <->  ( if ( 0  <_  B ,  B ,  0 )  e.  RR  /\  y  <  if ( 0  <_  B ,  B , 
0 ) ) ) )
9077biantrurd 495 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( y  <  B  <->  ( B  e.  RR  /\  y  < 
B ) ) )
9188, 89, 903bitr3d 275 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( ( if ( 0  <_  B ,  B ,  0 )  e.  RR  /\  y  <  if ( 0  <_  B ,  B , 
0 ) )  <->  ( B  e.  RR  /\  y  < 
B ) ) )
9278rexrd 9134 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  y  e.  RR* )
93 elioopnf 10998 . . . . . . . . . . 11  |-  ( y  e.  RR*  ->  ( if ( 0  <_  B ,  B ,  0 )  e.  ( y (,) 
+oo )  <->  ( if ( 0  <_  B ,  B ,  0 )  e.  RR  /\  y  <  if ( 0  <_  B ,  B , 
0 ) ) ) )
9492, 93syl 16 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( if ( 0  <_  B ,  B ,  0 )  e.  ( y (,) 
+oo )  <->  ( if ( 0  <_  B ,  B ,  0 )  e.  RR  /\  y  <  if ( 0  <_  B ,  B , 
0 ) ) ) )
9592, 34syl 16 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( B  e.  ( y (,)  +oo ) 
<->  ( B  e.  RR  /\  y  <  B ) ) )
9691, 94, 953bitr4d 277 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( if ( 0  <_  B ,  B ,  0 )  e.  ( y (,) 
+oo )  <->  B  e.  ( y (,)  +oo ) ) )
97 eqid 2436 . . . . . . . . . . . . 13  |-  ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  =  ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
9897fvmpt2 5812 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  if ( 0  <_  B ,  B ,  0 )  e.  RR )  -> 
( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) `
 x )  =  if ( 0  <_  B ,  B , 
0 ) )
9937, 7, 98syl2anc 643 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) `  x )  =  if ( 0  <_  B ,  B ,  0 ) )
10099eleq1d 2502 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) `
 x )  e.  ( y (,)  +oo ) 
<->  if ( 0  <_  B ,  B , 
0 )  e.  ( y (,)  +oo )
) )
10176, 100sylan 458 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( (
( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) `  x )  e.  ( y (,)  +oo )  <->  if ( 0  <_  B ,  B ,  0 )  e.  ( y (,) 
+oo ) ) )
10276, 45sylan 458 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( (
( x  e.  A  |->  B ) `  x
)  e.  ( y (,)  +oo )  <->  B  e.  ( y (,)  +oo ) ) )
10396, 101, 1023bitr4d 277 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  /\  x  e.  A
)  ->  ( (
( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) `  x )  e.  ( y (,)  +oo )  <->  ( ( x  e.  A  |->  B ) `  x
)  e.  ( y (,)  +oo ) ) )
104103pm5.32da 623 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  ->  (
( x  e.  A  /\  ( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) `
 x )  e.  ( y (,)  +oo ) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  B ) `  x
)  e.  ( y (,)  +oo ) ) ) )
1057, 97fmptd 5893 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) : A --> RR )
106 ffn 5591 . . . . . . . . 9  |-  ( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) : A --> RR  ->  ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  Fn  A )
107 elpreima 5850 . . . . . . . . 9  |-  ( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  Fn  A  -> 
( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
" ( y (,) 
+oo ) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) `  x )  e.  ( y (,)  +oo )
) ) )
108105, 106, 1073syl 19 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
" ( y (,) 
+oo ) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) `  x )  e.  ( y (,)  +oo )
) ) )
109108ad2antrr 707 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  ->  (
x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) "
( y (,)  +oo ) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) `  x )  e.  ( y (,)  +oo )
) ) )
11056ad2antrr 707 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  ->  (
x  e.  ( `' ( x  e.  A  |->  B ) " (
y (,)  +oo ) )  <-> 
( x  e.  A  /\  ( ( x  e.  A  |->  B ) `  x )  e.  ( y (,)  +oo )
) ) )
111104, 109, 1103bitr4d 277 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  ->  (
x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) "
( y (,)  +oo ) )  <->  x  e.  ( `' ( x  e.  A  |->  B ) "
( y (,)  +oo ) ) ) )
112111alrimiv 1641 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  ->  A. x
( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
" ( y (,) 
+oo ) )  <->  x  e.  ( `' ( x  e.  A  |->  B ) "
( y (,)  +oo ) ) ) )
113 nfmpt1 4298 . . . . . . . 8  |-  F/_ x
( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) )
114113nfcnv 5051 . . . . . . 7  |-  F/_ x `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
115114, 66nfima 5211 . . . . . 6  |-  F/_ x
( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) " ( y (,)  +oo ) )
116115, 67cleqf 2596 . . . . 5  |-  ( ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
" ( y (,) 
+oo ) )  =  ( `' ( x  e.  A  |->  B )
" ( y (,) 
+oo ) )  <->  A. x
( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
" ( y (,) 
+oo ) )  <->  x  e.  ( `' ( x  e.  A  |->  B ) "
( y (,)  +oo ) ) ) )
117112, 116sylibr 204 . . . 4  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  ->  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
" ( y (,) 
+oo ) )  =  ( `' ( x  e.  A  |->  B )
" ( y (,) 
+oo ) ) )
118 mbfima 19524 . . . . . 6  |-  ( ( ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) )  e. MblFn  /\  ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) : A --> RR )  -> 
( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) " ( y (,)  +oo ) )  e. 
dom  vol )
1194, 105, 118syl2anc 643 . . . . 5  |-  ( ph  ->  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) " ( y (,)  +oo ) )  e. 
dom  vol )
120119ad2antrr 707 . . . 4  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  ->  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
" ( y (,) 
+oo ) )  e. 
dom  vol )
121117, 120eqeltrrd 2511 . . 3  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <_  y )  ->  ( `' ( x  e.  A  |->  B ) "
( y (,)  +oo ) )  e.  dom  vol )
122 simpr 448 . . 3  |-  ( (
ph  /\  y  e.  RR )  ->  y  e.  RR )
1235a1i 11 . . 3  |-  ( (
ph  /\  y  e.  RR )  ->  0  e.  RR )
12474, 121, 122, 123ltlecasei 9181 . 2  |-  ( (
ph  /\  y  e.  RR )  ->  ( `' ( x  e.  A  |->  B ) " (
y (,)  +oo ) )  e.  dom  vol )
1255a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  0  e.  RR )
126 simpll 731 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  ->  ph )
127126, 1sylan 458 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  B  e.  RR )
128 simpllr 736 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  y  e.  RR )
129 maxlt 10780 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  B  e.  RR  /\  y  e.  RR )  ->  ( if ( 0  <_  B ,  B ,  0 )  <  y  <->  ( 0  <  y  /\  B  <  y ) ) )
130125, 127, 128, 129syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  ( if ( 0  <_  B ,  B ,  0 )  <  y  <->  ( 0  <  y  /\  B  <  y ) ) )
131 simplr 732 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  0  <  y )
132131biantrurd 495 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  ( B  <  y  <->  ( 0  < 
y  /\  B  <  y ) ) )
133130, 132bitr4d 248 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  ( if ( 0  <_  B ,  B ,  0 )  <  y  <->  B  <  y ) )
134126, 7sylan 458 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  if (
0  <_  B ,  B ,  0 )  e.  RR )
135134biantrurd 495 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  ( if ( 0  <_  B ,  B ,  0 )  <  y  <->  ( if ( 0  <_  B ,  B ,  0 )  e.  RR  /\  if ( 0  <_  B ,  B ,  0 )  <  y ) ) )
136127biantrurd 495 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  ( B  <  y  <->  ( B  e.  RR  /\  B  < 
y ) ) )
137133, 135, 1363bitr3d 275 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  ( ( if ( 0  <_  B ,  B ,  0 )  e.  RR  /\  if ( 0  <_  B ,  B ,  0 )  <  y )  <->  ( B  e.  RR  /\  B  < 
y ) ) )
138128rexrd 9134 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  y  e.  RR* )
139 elioomnf 10999 . . . . . . . . . . 11  |-  ( y  e.  RR*  ->  ( if ( 0  <_  B ,  B ,  0 )  e.  (  -oo (,) y )  <->  ( if ( 0  <_  B ,  B ,  0 )  e.  RR  /\  if ( 0  <_  B ,  B ,  0 )  <  y ) ) )
140138, 139syl 16 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  ( if ( 0  <_  B ,  B ,  0 )  e.  (  -oo (,) y )  <->  ( if ( 0  <_  B ,  B ,  0 )  e.  RR  /\  if ( 0  <_  B ,  B ,  0 )  <  y ) ) )
141 elioomnf 10999 . . . . . . . . . . 11  |-  ( y  e.  RR*  ->  ( B  e.  (  -oo (,) y )  <->  ( B  e.  RR  /\  B  < 
y ) ) )
142138, 141syl 16 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  ( B  e.  (  -oo (,) y
)  <->  ( B  e.  RR  /\  B  < 
y ) ) )
143137, 140, 1423bitr4d 277 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  ( if ( 0  <_  B ,  B ,  0 )  e.  (  -oo (,) y )  <->  B  e.  (  -oo (,) y ) ) )
14499eleq1d 2502 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) `
 x )  e.  (  -oo (,) y
)  <->  if ( 0  <_  B ,  B , 
0 )  e.  ( 
-oo (,) y ) ) )
145126, 144sylan 458 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  ( (
( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) `  x )  e.  ( 
-oo (,) y )  <->  if (
0  <_  B ,  B ,  0 )  e.  (  -oo (,) y ) ) )
14644eleq1d 2502 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  B ) `  x )  e.  ( 
-oo (,) y )  <->  B  e.  (  -oo (,) y ) ) )
147126, 146sylan 458 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  ( (
( x  e.  A  |->  B ) `  x
)  e.  (  -oo (,) y )  <->  B  e.  (  -oo (,) y ) ) )
148143, 145, 1473bitr4d 277 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  /\  x  e.  A
)  ->  ( (
( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) `  x )  e.  ( 
-oo (,) y )  <->  ( (
x  e.  A  |->  B ) `  x )  e.  (  -oo (,) y ) ) )
149148pm5.32da 623 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  ->  (
( x  e.  A  /\  ( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) `
 x )  e.  (  -oo (,) y
) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  B ) `  x
)  e.  (  -oo (,) y ) ) ) )
150 elpreima 5850 . . . . . . . . 9  |-  ( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  Fn  A  -> 
( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
" (  -oo (,) y ) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) `  x )  e.  ( 
-oo (,) y ) ) ) )
151105, 106, 1503syl 19 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
" (  -oo (,) y ) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) `  x )  e.  ( 
-oo (,) y ) ) ) )
152151ad2antrr 707 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  ->  (
x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) "
(  -oo (,) y ) )  <->  ( x  e.  A  /\  ( ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) `  x )  e.  (  -oo (,) y ) ) ) )
153 elpreima 5850 . . . . . . . . 9  |-  ( ( x  e.  A  |->  B )  Fn  A  -> 
( x  e.  ( `' ( x  e.  A  |->  B ) "
(  -oo (,) y ) )  <->  ( x  e.  A  /\  ( ( x  e.  A  |->  B ) `  x )  e.  (  -oo (,) y ) ) ) )
1543, 54, 1533syl 19 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( `' ( x  e.  A  |->  B ) "
(  -oo (,) y ) )  <->  ( x  e.  A  /\  ( ( x  e.  A  |->  B ) `  x )  e.  (  -oo (,) y ) ) ) )
155154ad2antrr 707 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  ->  (
x  e.  ( `' ( x  e.  A  |->  B ) " (  -oo (,) y ) )  <-> 
( x  e.  A  /\  ( ( x  e.  A  |->  B ) `  x )  e.  ( 
-oo (,) y ) ) ) )
156149, 152, 1553bitr4d 277 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  ->  (
x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) "
(  -oo (,) y ) )  <->  x  e.  ( `' ( x  e.  A  |->  B ) "
(  -oo (,) y ) ) ) )
157156alrimiv 1641 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  ->  A. x
( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
" (  -oo (,) y ) )  <->  x  e.  ( `' ( x  e.  A  |->  B ) "
(  -oo (,) y ) ) ) )
158 nfcv 2572 . . . . . . 7  |-  F/_ x
(  -oo (,) y )
159114, 158nfima 5211 . . . . . 6  |-  F/_ x
( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) " (  -oo (,) y ) )
16065, 158nfima 5211 . . . . . 6  |-  F/_ x
( `' ( x  e.  A  |->  B )
" (  -oo (,) y ) )
161159, 160cleqf 2596 . . . . 5  |-  ( ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
" (  -oo (,) y ) )  =  ( `' ( x  e.  A  |->  B )
" (  -oo (,) y ) )  <->  A. x
( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
" (  -oo (,) y ) )  <->  x  e.  ( `' ( x  e.  A  |->  B ) "
(  -oo (,) y ) ) ) )
162157, 161sylibr 204 . . . 4  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  ->  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
" (  -oo (,) y ) )  =  ( `' ( x  e.  A  |->  B )
" (  -oo (,) y ) ) )
163 mbfima 19524 . . . . . 6  |-  ( ( ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) )  e. MblFn  /\  ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) ) : A --> RR )  -> 
( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) " (  -oo (,) y ) )  e. 
dom  vol )
1644, 105, 163syl2anc 643 . . . . 5  |-  ( ph  ->  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) ) " (  -oo (,) y ) )  e. 
dom  vol )
165164ad2antrr 707 . . . 4  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  ->  ( `' ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )
" (  -oo (,) y ) )  e. 
dom  vol )
166162, 165eqeltrrd 2511 . . 3  |-  ( ( ( ph  /\  y  e.  RR )  /\  0  <  y )  ->  ( `' ( x  e.  A  |->  B ) "
(  -oo (,) y ) )  e.  dom  vol )
167 simplr 732 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  y  <_  0 )
168 simpllr 736 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  y  e.  RR )
169168le0neg1d 9598 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( y  <_  0  <->  0  <_  -u y
) )
170167, 169mpbid 202 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  0  <_  -u y )
171170biantrurd 495 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( -u B  <_ 
-u y  <->  ( 0  <_  -u y  /\  -u B  <_ 
-u y ) ) )
172 simpll 731 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  ->  ph )
173172, 1sylan 458 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  B  e.  RR )
174168, 173lenegd 9605 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( y  <_  B  <->  -u B  <_  -u y
) )
1755a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  0  e.  RR )
176173renegcld 9464 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  -u B  e.  RR )
177168renegcld 9464 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  -u y  e.  RR )
178 maxle 10778 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR  /\  -u B  e.  RR  /\  -u y  e.  RR )  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  <_  -u y  <->  ( 0  <_  -u y  /\  -u B  <_ 
-u y ) ) )
179175, 176, 177, 178syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  <_  -u y  <->  ( 0  <_  -u y  /\  -u B  <_ 
-u y ) ) )
180171, 174, 1793bitr4rd 278 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  <_  -u y  <->  y  <_  B ) )
181180notbid 286 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( -.  if ( 0  <_  -u B ,  -u B ,  0 )  <_  -u y  <->  -.  y  <_  B ) )
182172, 25sylan 458 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  if (
0  <_  -u B ,  -u B ,  0 )  e.  RR )
183177, 182ltnled 9220 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( -u y  <  if ( 0  <_  -u B ,  -u B ,  0 )  <->  -.  if ( 0  <_  -u B ,  -u B ,  0 )  <_  -u y ) )
184173, 168ltnled 9220 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( B  <  y  <->  -.  y  <_  B ) )
185181, 183, 1843bitr4d 277 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( -u y  <  if ( 0  <_  -u B ,  -u B ,  0 )  <->  B  <  y ) )
186182biantrurd 495 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( -u y  <  if ( 0  <_  -u B ,  -u B ,  0 )  <->  ( if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR  /\  -u y  <  if ( 0  <_  -u B ,  -u B ,  0 ) ) ) )
187173biantrurd 495 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( B  <  y  <->  ( B  e.  RR  /\  B  < 
y ) ) )
188185, 186, 1873bitr3d 275 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( ( if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR  /\  -u y  <  if ( 0  <_  -u B ,  -u B ,  0 ) )  <->  ( B  e.  RR  /\  B  < 
y ) ) )
189177rexrd 9134 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  -u y  e. 
RR* )
190 elioopnf 10998 . . . . . . . . . . 11  |-  ( -u y  e.  RR*  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  e.  ( -u y (,)  +oo )  <->  ( if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR  /\  -u y  <  if ( 0  <_  -u B ,  -u B ,  0 ) ) ) )
191189, 190syl 16 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  e.  ( -u y (,)  +oo )  <->  ( if ( 0  <_  -u B ,  -u B ,  0 )  e.  RR  /\  -u y  <  if ( 0  <_  -u B ,  -u B ,  0 ) ) ) )
192168rexrd 9134 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  y  e.  RR* )
193192, 141syl 16 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( B  e.  (  -oo (,) y
)  <->  ( B  e.  RR  /\  B  < 
y ) ) )
194188, 191, 1933bitr4d 277 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( if ( 0  <_  -u B ,  -u B ,  0 )  e.  ( -u y (,)  +oo )  <->  B  e.  (  -oo (,) y ) ) )
19540eleq1d 2502 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `  x )  e.  ( -u y (,)  +oo )  <->  if (
0  <_  -u B ,  -u B ,  0 )  e.  ( -u y (,)  +oo ) ) )
196172, 195sylan 458 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( (
( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `
 x )  e.  ( -u y (,) 
+oo )  <->  if (
0  <_  -u B ,  -u B ,  0 )  e.  ( -u y (,)  +oo ) ) )
197172, 146sylan 458 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( (
( x  e.  A  |->  B ) `  x
)  e.  (  -oo (,) y )  <->  B  e.  (  -oo (,) y ) ) )
198194, 196, 1973bitr4d 277 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  /\  x  e.  A
)  ->  ( (
( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `
 x )  e.  ( -u y (,) 
+oo )  <->  ( (
x  e.  A  |->  B ) `  x )  e.  (  -oo (,) y ) ) )
199198pm5.32da 623 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  ->  (
( x  e.  A  /\  ( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `  x )  e.  ( -u y (,)  +oo ) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  B ) `  x
)  e.  (  -oo (,) y ) ) ) )
200 elpreima 5850 . . . . . . . . 9  |-  ( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  Fn  A  ->  ( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -u y (,)  +oo ) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `
 x )  e.  ( -u y (,) 
+oo ) ) ) )
20149, 50, 2003syl 19 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -u y (,)  +oo ) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `
 x )  e.  ( -u y (,) 
+oo ) ) ) )
202201ad2antrr 707 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  ->  (
x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )
" ( -u y (,)  +oo ) )  <->  ( x  e.  A  /\  (
( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) `
 x )  e.  ( -u y (,) 
+oo ) ) ) )
203154ad2antrr 707 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  ->  (
x  e.  ( `' ( x  e.  A  |->  B ) " (  -oo (,) y ) )  <-> 
( x  e.  A  /\  ( ( x  e.  A  |->  B ) `  x )  e.  ( 
-oo (,) y ) ) ) )
204199, 202, 2033bitr4d 277 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  ->  (
x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )
" ( -u y (,)  +oo ) )  <->  x  e.  ( `' ( x  e.  A  |->  B ) "
(  -oo (,) y ) ) ) )
205204alrimiv 1641 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  ->  A. x
( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -u y (,)  +oo ) )  <->  x  e.  ( `' ( x  e.  A  |->  B ) "
(  -oo (,) y ) ) ) )
206 nfcv 2572 . . . . . . 7  |-  F/_ x
( -u y (,)  +oo )
20761, 206nfima 5211 . . . . . 6  |-  F/_ x
( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -u y (,)  +oo ) )
208207, 160cleqf 2596 . . . . 5  |-  ( ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -u y (,)  +oo ) )  =  ( `' ( x  e.  A  |->  B )
" (  -oo (,) y ) )  <->  A. x
( x  e.  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -u y (,)  +oo ) )  <->  x  e.  ( `' ( x  e.  A  |->  B ) "
(  -oo (,) y ) ) ) )
209205, 208sylibr 204 . . . 4  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  ->  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -u y (,)  +oo ) )  =  ( `' ( x  e.  A  |->  B )
" (  -oo (,) y ) ) )
210 mbfima 19524 . . . . . 6  |-  ( ( ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) )  e. MblFn  /\  ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) : A --> RR )  ->  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -u y (,)  +oo )
)  e.  dom  vol )
21170, 49, 210syl2anc 643 . . . . 5  |-  ( ph  ->  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -u y (,)  +oo ) )  e. 
dom  vol )
212211ad2antrr 707 . . . 4  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  ->  ( `' ( x  e.  A  |->  if ( 0  <_  -u B ,  -u B ,  0 ) ) " ( -u y (,)  +oo ) )  e. 
dom  vol )
213209, 212eqeltrrd 2511 . . 3  |-  ( ( ( ph  /\  y  e.  RR )  /\  y  <_  0 )  ->  ( `' ( x  e.  A  |->  B ) "
(  -oo (,) y ) )  e.  dom  vol )
214166, 213, 123, 122ltlecasei 9181 . 2  |-  ( (
ph  /\  y  e.  RR )  ->  ( `' ( x  e.  A  |->  B ) " (  -oo (,) y ) )  e.  dom  vol )
2153, 8, 124, 214ismbf2d 19533 1  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1549    = wceq 1652    e. wcel 1725   ifcif 3739   class class class wbr 4212    e. cmpt 4266   `'ccnv 4877   dom cdm 4878   "cima 4881    Fn wfn 5449   -->wf 5450   ` cfv 5454  (class class class)co 6081   RRcr 8989   0cc0 8990    +oocpnf 9117    -oocmnf 9118   RR*cxr 9119    < clt 9120    <_ cle 9121   -ucneg 9292   (,)cioo 10916   volcvol 19360  MblFncmbf 19506
This theorem is referenced by:  mbfposb  19545
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-map 7020  df-pm 7021  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-oi 7479  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-q 10575  df-rp 10613  df-xadd 10711  df-ioo 10920  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-fl 11202  df-seq 11324  df-exp 11383  df-hash 11619  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-clim 12282  df-sum 12480  df-xmet 16695  df-met 16696  df-ovol 19361  df-vol 19362  df-mbf 19512
  Copyright terms: Public domain W3C validator