Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdandyv0 Unicode version

Theorem mdandyv0 27894
Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly (Contributed by Jarvin Udandy, 6-Sep-2016.)
Hypotheses
Ref Expression
mdandyv0.1  |-  ( ph  <->  F.  )
mdandyv0.2  |-  ( ps  <->  T.  )
mdandyv0.3  |-  ( ch  <->  F.  )
mdandyv0.4  |-  ( th  <->  F.  )
mdandyv0.5  |-  ( ta  <->  F.  )
mdandyv0.6  |-  ( et  <->  F.  )
Assertion
Ref Expression
mdandyv0  |-  ( ( ( ( ch  <->  ph )  /\  ( th  <->  ph ) )  /\  ( ta  <->  ph ) )  /\  ( et  <->  ph ) )

Proof of Theorem mdandyv0
StepHypRef Expression
1 mdandyv0.3 . . . . 5  |-  ( ch  <->  F.  )
2 mdandyv0.1 . . . . 5  |-  ( ph  <->  F.  )
31, 2bothfbothsame 27868 . . . 4  |-  ( ch  <->  ph )
4 mdandyv0.4 . . . . 5  |-  ( th  <->  F.  )
54, 2bothfbothsame 27868 . . . 4  |-  ( th  <->  ph )
63, 5pm3.2i 441 . . 3  |-  ( ( ch  <->  ph )  /\  ( th 
<-> 
ph ) )
7 mdandyv0.5 . . . 4  |-  ( ta  <->  F.  )
87, 2bothfbothsame 27868 . . 3  |-  ( ta  <->  ph )
96, 8pm3.2i 441 . 2  |-  ( ( ( ch  <->  ph )  /\  ( th  <->  ph ) )  /\  ( ta  <->  ph ) )
10 mdandyv0.6 . . 3  |-  ( et  <->  F.  )
1110, 2bothfbothsame 27868 . 2  |-  ( et  <->  ph )
129, 11pm3.2i 441 1  |-  ( ( ( ( ch  <->  ph )  /\  ( th  <->  ph ) )  /\  ( ta  <->  ph ) )  /\  ( et  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    T. wtru 1307    F. wfal 1308
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-fal 1311
  Copyright terms: Public domain W3C validator