Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdandyv7 Unicode version

Theorem mdandyv7 27901
Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly (Contributed by Jarvin Udandy, 6-Sep-2016.)
Hypotheses
Ref Expression
mdandyv7.1  |-  ( ph  <->  F.  )
mdandyv7.2  |-  ( ps  <->  T.  )
mdandyv7.3  |-  ( ch  <->  T.  )
mdandyv7.4  |-  ( th  <->  T.  )
mdandyv7.5  |-  ( ta  <->  T.  )
mdandyv7.6  |-  ( et  <->  F.  )
Assertion
Ref Expression
mdandyv7  |-  ( ( ( ( ch  <->  ps )  /\  ( th  <->  ps )
)  /\  ( ta  <->  ps ) )  /\  ( et 
<-> 
ph ) )

Proof of Theorem mdandyv7
StepHypRef Expression
1 mdandyv7.3 . . . . 5  |-  ( ch  <->  T.  )
2 mdandyv7.2 . . . . 5  |-  ( ps  <->  T.  )
31, 2bothtbothsame 27867 . . . 4  |-  ( ch  <->  ps )
4 mdandyv7.4 . . . . 5  |-  ( th  <->  T.  )
54, 2bothtbothsame 27867 . . . 4  |-  ( th  <->  ps )
63, 5pm3.2i 441 . . 3  |-  ( ( ch  <->  ps )  /\  ( th 
<->  ps ) )
7 mdandyv7.5 . . . 4  |-  ( ta  <->  T.  )
87, 2bothtbothsame 27867 . . 3  |-  ( ta  <->  ps )
96, 8pm3.2i 441 . 2  |-  ( ( ( ch  <->  ps )  /\  ( th  <->  ps )
)  /\  ( ta  <->  ps ) )
10 mdandyv7.6 . . 3  |-  ( et  <->  F.  )
11 mdandyv7.1 . . 3  |-  ( ph  <->  F.  )
1210, 11bothfbothsame 27868 . 2  |-  ( et  <->  ph )
139, 12pm3.2i 441 1  |-  ( ( ( ( ch  <->  ps )  /\  ( th  <->  ps )
)  /\  ( ta  <->  ps ) )  /\  ( et 
<-> 
ph ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    T. wtru 1307    F. wfal 1308
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-fal 1311
  Copyright terms: Public domain W3C validator