Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdandyvr10 Unicode version

Theorem mdandyvr10 27920
Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly (Contributed by Jarvin Udandy, 7-Sep-2016.)
Hypotheses
Ref Expression
mdandyvr10.1  |-  ( ph  <->  ze )
mdandyvr10.2  |-  ( ps  <->  si )
mdandyvr10.3  |-  ( ch  <->  ph )
mdandyvr10.4  |-  ( th  <->  ps )
mdandyvr10.5  |-  ( ta  <->  ph )
mdandyvr10.6  |-  ( et  <->  ps )
Assertion
Ref Expression
mdandyvr10  |-  ( ( ( ( ch  <->  ze )  /\  ( th  <->  si )
)  /\  ( ta  <->  ze ) )  /\  ( et 
<-> 
si ) )

Proof of Theorem mdandyvr10
StepHypRef Expression
1 mdandyvr10.3 . . . . 5  |-  ( ch  <->  ph )
2 mdandyvr10.1 . . . . 5  |-  ( ph  <->  ze )
31, 2bitri 240 . . . 4  |-  ( ch  <->  ze )
4 mdandyvr10.4 . . . . 5  |-  ( th  <->  ps )
5 mdandyvr10.2 . . . . 5  |-  ( ps  <->  si )
64, 5bitri 240 . . . 4  |-  ( th  <->  si )
73, 6pm3.2i 441 . . 3  |-  ( ( ch  <->  ze )  /\  ( th 
<-> 
si ) )
8 mdandyvr10.5 . . . 4  |-  ( ta  <->  ph )
98, 2bitri 240 . . 3  |-  ( ta  <->  ze )
107, 9pm3.2i 441 . 2  |-  ( ( ( ch  <->  ze )  /\  ( th  <->  si )
)  /\  ( ta  <->  ze ) )
11 mdandyvr10.6 . . 3  |-  ( et  <->  ps )
1211, 5bitri 240 . 2  |-  ( et  <->  si )
1310, 12pm3.2i 441 1  |-  ( ( ( ( ch  <->  ze )  /\  ( th  <->  si )
)  /\  ( ta  <->  ze ) )  /\  ( et 
<-> 
si ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator