Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdandyvr13 Structured version   Unicode version

Theorem mdandyvr13 27899
Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly (Contributed by Jarvin Udandy, 7-Sep-2016.)
Hypotheses
Ref Expression
mdandyvr13.1  |-  ( ph  <->  ze )
mdandyvr13.2  |-  ( ps  <->  si )
mdandyvr13.3  |-  ( ch  <->  ps )
mdandyvr13.4  |-  ( th  <->  ph )
mdandyvr13.5  |-  ( ta  <->  ps )
mdandyvr13.6  |-  ( et  <->  ps )
Assertion
Ref Expression
mdandyvr13  |-  ( ( ( ( ch  <->  si )  /\  ( th  <->  ze )
)  /\  ( ta  <->  si ) )  /\  ( et 
<-> 
si ) )

Proof of Theorem mdandyvr13
StepHypRef Expression
1 mdandyvr13.2 . 2  |-  ( ps  <->  si )
2 mdandyvr13.1 . 2  |-  ( ph  <->  ze )
3 mdandyvr13.3 . 2  |-  ( ch  <->  ps )
4 mdandyvr13.4 . 2  |-  ( th  <->  ph )
5 mdandyvr13.5 . 2  |-  ( ta  <->  ps )
6 mdandyvr13.6 . 2  |-  ( et  <->  ps )
71, 2, 3, 4, 5, 6mdandyvr2 27888 1  |-  ( ( ( ( ch  <->  si )  /\  ( th  <->  ze )
)  /\  ( ta  <->  si ) )  /\  ( et 
<-> 
si ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361
  Copyright terms: Public domain W3C validator