Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdandyvr6 Unicode version

Theorem mdandyvr6 28019
Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly (Contributed by Jarvin Udandy, 7-Sep-2016.)
Hypotheses
Ref Expression
mdandyvr6.1  |-  ( ph  <->  ze )
mdandyvr6.2  |-  ( ps  <->  si )
mdandyvr6.3  |-  ( ch  <->  ph )
mdandyvr6.4  |-  ( th  <->  ps )
mdandyvr6.5  |-  ( ta  <->  ps )
mdandyvr6.6  |-  ( et  <->  ph )
Assertion
Ref Expression
mdandyvr6  |-  ( ( ( ( ch  <->  ze )  /\  ( th  <->  si )
)  /\  ( ta  <->  si ) )  /\  ( et 
<->  ze ) )

Proof of Theorem mdandyvr6
StepHypRef Expression
1 mdandyvr6.3 . . . . 5  |-  ( ch  <->  ph )
2 mdandyvr6.1 . . . . 5  |-  ( ph  <->  ze )
31, 2bitri 240 . . . 4  |-  ( ch  <->  ze )
4 mdandyvr6.4 . . . . 5  |-  ( th  <->  ps )
5 mdandyvr6.2 . . . . 5  |-  ( ps  <->  si )
64, 5bitri 240 . . . 4  |-  ( th  <->  si )
73, 6pm3.2i 441 . . 3  |-  ( ( ch  <->  ze )  /\  ( th 
<-> 
si ) )
8 mdandyvr6.5 . . . 4  |-  ( ta  <->  ps )
98, 5bitri 240 . . 3  |-  ( ta  <->  si )
107, 9pm3.2i 441 . 2  |-  ( ( ( ch  <->  ze )  /\  ( th  <->  si )
)  /\  ( ta  <->  si ) )
11 mdandyvr6.6 . . 3  |-  ( et  <->  ph )
1211, 2bitri 240 . 2  |-  ( et  <->  ze )
1310, 12pm3.2i 441 1  |-  ( ( ( ( ch  <->  ze )  /\  ( th  <->  si )
)  /\  ( ta  <->  si ) )  /\  ( et 
<->  ze ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator