Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdandyvr9 Structured version   Unicode version

Theorem mdandyvr9 27909
Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly (Contributed by Jarvin Udandy, 7-Sep-2016.)
Hypotheses
Ref Expression
mdandyvr9.1  |-  ( ph  <->  ze )
mdandyvr9.2  |-  ( ps  <->  si )
mdandyvr9.3  |-  ( ch  <->  ps )
mdandyvr9.4  |-  ( th  <->  ph )
mdandyvr9.5  |-  ( ta  <->  ph )
mdandyvr9.6  |-  ( et  <->  ps )
Assertion
Ref Expression
mdandyvr9  |-  ( ( ( ( ch  <->  si )  /\  ( th  <->  ze )
)  /\  ( ta  <->  ze ) )  /\  ( et 
<-> 
si ) )

Proof of Theorem mdandyvr9
StepHypRef Expression
1 mdandyvr9.2 . 2  |-  ( ps  <->  si )
2 mdandyvr9.1 . 2  |-  ( ph  <->  ze )
3 mdandyvr9.3 . 2  |-  ( ch  <->  ps )
4 mdandyvr9.4 . 2  |-  ( th  <->  ph )
5 mdandyvr9.5 . 2  |-  ( ta  <->  ph )
6 mdandyvr9.6 . 2  |-  ( et  <->  ps )
71, 2, 3, 4, 5, 6mdandyvr6 27906 1  |-  ( ( ( ( ch  <->  si )  /\  ( th  <->  ze )
)  /\  ( ta  <->  ze ) )  /\  ( et 
<-> 
si ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179  df-an 362
  Copyright terms: Public domain W3C validator