Mathbox for Jarvin Udandy < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdandyvrx0 Structured version   Unicode version

Theorem mdandyvrx0 27893
 Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly (Contributed by Jarvin Udandy, 7-Sep-2016.)
Hypotheses
Ref Expression
mdandyvrx0.1
mdandyvrx0.2
mdandyvrx0.3
mdandyvrx0.4
mdandyvrx0.5
mdandyvrx0.6
Assertion
Ref Expression
mdandyvrx0

Proof of Theorem mdandyvrx0
StepHypRef Expression
1 mdandyvrx0.1 . . . . 5
2 mdandyvrx0.3 . . . . 5
31, 2axorbciffatcxorb 27840 . . . 4
4 mdandyvrx0.4 . . . . 5
51, 4axorbciffatcxorb 27840 . . . 4
63, 5pm3.2i 442 . . 3
7 mdandyvrx0.5 . . . 4
81, 7axorbciffatcxorb 27840 . . 3
96, 8pm3.2i 442 . 2
10 mdandyvrx0.6 . . 3
111, 10axorbciffatcxorb 27840 . 2
129, 11pm3.2i 442 1
 Colors of variables: wff set class Syntax hints:   wb 177   wa 359   wxo 1313 This theorem is referenced by:  mdandyvrx15  27908 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8 This theorem depends on definitions:  df-bi 178  df-an 361  df-xor 1314
 Copyright terms: Public domain W3C validator