Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdandyvrx15 Structured version   Unicode version

Theorem mdandyvrx15 27917
Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly (Contributed by Jarvin Udandy, 7-Sep-2016.)
Hypotheses
Ref Expression
mdandyvrx15.1  |-  ( ph  \/_ 
ze )
mdandyvrx15.2  |-  ( ps 
\/_  si )
mdandyvrx15.3  |-  ( ch  <->  ps )
mdandyvrx15.4  |-  ( th  <->  ps )
mdandyvrx15.5  |-  ( ta  <->  ps )
mdandyvrx15.6  |-  ( et  <->  ps )
Assertion
Ref Expression
mdandyvrx15  |-  ( ( ( ( ch  \/_  si )  /\  ( th 
\/_  si ) )  /\  ( ta  \/_  si )
)  /\  ( et  \/_  si ) )

Proof of Theorem mdandyvrx15
StepHypRef Expression
1 mdandyvrx15.2 . 2  |-  ( ps 
\/_  si )
2 mdandyvrx15.1 . 2  |-  ( ph  \/_ 
ze )
3 mdandyvrx15.3 . 2  |-  ( ch  <->  ps )
4 mdandyvrx15.4 . 2  |-  ( th  <->  ps )
5 mdandyvrx15.5 . 2  |-  ( ta  <->  ps )
6 mdandyvrx15.6 . 2  |-  ( et  <->  ps )
71, 2, 3, 4, 5, 6mdandyvrx0 27902 1  |-  ( ( ( ( ch  \/_  si )  /\  ( th 
\/_  si ) )  /\  ( ta  \/_  si )
)  /\  ( et  \/_  si ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    \/_ wxo 1313
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-xor 1314
  Copyright terms: Public domain W3C validator