Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdandyvrx6 Structured version   Unicode version

Theorem mdandyvrx6 27908
Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly (Contributed by Jarvin Udandy, 7-Sep-2016.)
Hypotheses
Ref Expression
mdandyvrx6.1  |-  ( ph  \/_ 
ze )
mdandyvrx6.2  |-  ( ps 
\/_  si )
mdandyvrx6.3  |-  ( ch  <->  ph )
mdandyvrx6.4  |-  ( th  <->  ps )
mdandyvrx6.5  |-  ( ta  <->  ps )
mdandyvrx6.6  |-  ( et  <->  ph )
Assertion
Ref Expression
mdandyvrx6  |-  ( ( ( ( ch  \/_  ze )  /\  ( th 
\/_  si ) )  /\  ( ta  \/_  si )
)  /\  ( et  \/_  ze ) )

Proof of Theorem mdandyvrx6
StepHypRef Expression
1 mdandyvrx6.1 . . . . 5  |-  ( ph  \/_ 
ze )
2 mdandyvrx6.3 . . . . 5  |-  ( ch  <->  ph )
31, 2axorbciffatcxorb 27849 . . . 4  |-  ( ch 
\/_  ze )
4 mdandyvrx6.2 . . . . 5  |-  ( ps 
\/_  si )
5 mdandyvrx6.4 . . . . 5  |-  ( th  <->  ps )
64, 5axorbciffatcxorb 27849 . . . 4  |-  ( th 
\/_  si )
73, 6pm3.2i 442 . . 3  |-  ( ( ch  \/_  ze )  /\  ( th  \/_  si )
)
8 mdandyvrx6.5 . . . 4  |-  ( ta  <->  ps )
94, 8axorbciffatcxorb 27849 . . 3  |-  ( ta 
\/_  si )
107, 9pm3.2i 442 . 2  |-  ( ( ( ch  \/_  ze )  /\  ( th  \/_  si ) )  /\  ( ta  \/_  si ) )
11 mdandyvrx6.6 . . 3  |-  ( et  <->  ph )
121, 11axorbciffatcxorb 27849 . 2  |-  ( et 
\/_  ze )
1310, 12pm3.2i 442 1  |-  ( ( ( ( ch  \/_  ze )  /\  ( th 
\/_  si ) )  /\  ( ta  \/_  si )
)  /\  ( et  \/_  ze ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    \/_ wxo 1313
This theorem is referenced by:  mdandyvrx9  27911
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-xor 1314
  Copyright terms: Public domain W3C validator