Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdandyvrx9 Unicode version

Theorem mdandyvrx9 27935
Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly (Contributed by Jarvin Udandy, 7-Sep-2016.)
Hypotheses
Ref Expression
mdandyvrx9.1  |-  ( ph \/_ ze )
mdandyvrx9.2  |-  ( ps
\/_ si )
mdandyvrx9.3  |-  ( ch  <->  ps )
mdandyvrx9.4  |-  ( th  <->  ph )
mdandyvrx9.5  |-  ( ta  <->  ph )
mdandyvrx9.6  |-  ( et  <->  ps )
Assertion
Ref Expression
mdandyvrx9  |-  ( ( ( ( ch \/_ si )  /\  ( th
\/_ ze ) )  /\  ( ta \/_ ze )
)  /\  ( et \/_ si ) )

Proof of Theorem mdandyvrx9
StepHypRef Expression
1 mdandyvrx9.2 . . . . 5  |-  ( ps
\/_ si )
2 mdandyvrx9.3 . . . . 5  |-  ( ch  <->  ps )
31, 2axorbciffatcxorb 27873 . . . 4  |-  ( ch
\/_ si )
4 mdandyvrx9.1 . . . . 5  |-  ( ph \/_ ze )
5 mdandyvrx9.4 . . . . 5  |-  ( th  <->  ph )
64, 5axorbciffatcxorb 27873 . . . 4  |-  ( th
\/_ ze )
73, 6pm3.2i 441 . . 3  |-  ( ( ch \/_ si )  /\  ( th \/_ ze ) )
8 mdandyvrx9.5 . . . 4  |-  ( ta  <->  ph )
94, 8axorbciffatcxorb 27873 . . 3  |-  ( ta
\/_ ze )
107, 9pm3.2i 441 . 2  |-  ( ( ( ch \/_ si )  /\  ( th \/_ ze ) )  /\  ( ta \/_ ze ) )
11 mdandyvrx9.6 . . 3  |-  ( et  <->  ps )
121, 11axorbciffatcxorb 27873 . 2  |-  ( et
\/_ si )
1310, 12pm3.2i 441 1  |-  ( ( ( ( ch \/_ si )  /\  ( th
\/_ ze ) )  /\  ( ta \/_ ze )
)  /\  ( et \/_ si ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358   \/_wxo 1295
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-xor 1296
  Copyright terms: Public domain W3C validator