HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mddmd2 Unicode version

Theorem mddmd2 22889
Description: Relationship between modular pairs and dual-modular pairs. Lemma 1.2 of [MaedaMaeda] p. 1. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
mddmd2  |-  ( A  e.  CH  ->  ( A. x  e.  CH  A  MH  x  <->  A. x  e.  CH  A  MH*  x ) )
Distinct variable group:    x, A

Proof of Theorem mddmd2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 breq2 4027 . . . . 5  |-  ( x  =  y  ->  ( A  MH  x  <->  A  MH  y ) )
21cbvralv 2764 . . . 4  |-  ( A. x  e.  CH  A  MH  x 
<-> 
A. y  e.  CH  A  MH  y )
3 mdbr 22874 . . . . . 6  |-  ( ( A  e.  CH  /\  y  e.  CH )  ->  ( A  MH  y  <->  A. x  e.  CH  (
x  C_  y  ->  ( ( x  vH  A
)  i^i  y )  =  ( x  vH  ( A  i^i  y
) ) ) ) )
4 incom 3361 . . . . . . . . . . . 12  |-  ( ( A  vH  x )  i^i  y )  =  ( y  i^i  ( A  vH  x ) )
5 chjcom 22085 . . . . . . . . . . . . 13  |-  ( ( A  e.  CH  /\  x  e.  CH )  ->  ( A  vH  x
)  =  ( x  vH  A ) )
65ineq1d 3369 . . . . . . . . . . . 12  |-  ( ( A  e.  CH  /\  x  e.  CH )  ->  ( ( A  vH  x )  i^i  y
)  =  ( ( x  vH  A )  i^i  y ) )
74, 6syl5reqr 2330 . . . . . . . . . . 11  |-  ( ( A  e.  CH  /\  x  e.  CH )  ->  ( ( x  vH  A )  i^i  y
)  =  ( y  i^i  ( A  vH  x ) ) )
87adantlr 695 . . . . . . . . . 10  |-  ( ( ( A  e.  CH  /\  y  e.  CH )  /\  x  e.  CH )  ->  ( ( x  vH  A )  i^i  y
)  =  ( y  i^i  ( A  vH  x ) ) )
9 incom 3361 . . . . . . . . . . . 12  |-  ( A  i^i  y )  =  ( y  i^i  A
)
109oveq1i 5868 . . . . . . . . . . 11  |-  ( ( A  i^i  y )  vH  x )  =  ( ( y  i^i 
A )  vH  x
)
11 chincl 22078 . . . . . . . . . . . 12  |-  ( ( A  e.  CH  /\  y  e.  CH )  ->  ( A  i^i  y
)  e.  CH )
12 chjcom 22085 . . . . . . . . . . . 12  |-  ( ( ( A  i^i  y
)  e.  CH  /\  x  e.  CH )  ->  ( ( A  i^i  y )  vH  x
)  =  ( x  vH  ( A  i^i  y ) ) )
1311, 12sylan 457 . . . . . . . . . . 11  |-  ( ( ( A  e.  CH  /\  y  e.  CH )  /\  x  e.  CH )  ->  ( ( A  i^i  y )  vH  x
)  =  ( x  vH  ( A  i^i  y ) ) )
1410, 13syl5reqr 2330 . . . . . . . . . 10  |-  ( ( ( A  e.  CH  /\  y  e.  CH )  /\  x  e.  CH )  ->  ( x  vH  ( A  i^i  y ) )  =  ( ( y  i^i  A )  vH  x ) )
158, 14eqeq12d 2297 . . . . . . . . 9  |-  ( ( ( A  e.  CH  /\  y  e.  CH )  /\  x  e.  CH )  ->  ( ( ( x  vH  A )  i^i  y )  =  ( x  vH  ( A  i^i  y ) )  <-> 
( y  i^i  ( A  vH  x ) )  =  ( ( y  i^i  A )  vH  x ) ) )
16 eqcom 2285 . . . . . . . . 9  |-  ( ( y  i^i  ( A  vH  x ) )  =  ( ( y  i^i  A )  vH  x )  <->  ( (
y  i^i  A )  vH  x )  =  ( y  i^i  ( A  vH  x ) ) )
1715, 16syl6bb 252 . . . . . . . 8  |-  ( ( ( A  e.  CH  /\  y  e.  CH )  /\  x  e.  CH )  ->  ( ( ( x  vH  A )  i^i  y )  =  ( x  vH  ( A  i^i  y ) )  <-> 
( ( y  i^i 
A )  vH  x
)  =  ( y  i^i  ( A  vH  x ) ) ) )
1817imbi2d 307 . . . . . . 7  |-  ( ( ( A  e.  CH  /\  y  e.  CH )  /\  x  e.  CH )  ->  ( ( x  C_  y  ->  ( ( x  vH  A )  i^i  y )  =  ( x  vH  ( A  i^i  y ) ) )  <->  ( x  C_  y  ->  ( ( y  i^i  A )  vH  x )  =  ( y  i^i  ( A  vH  x ) ) ) ) )
1918ralbidva 2559 . . . . . 6  |-  ( ( A  e.  CH  /\  y  e.  CH )  ->  ( A. x  e. 
CH  ( x  C_  y  ->  ( ( x  vH  A )  i^i  y )  =  ( x  vH  ( A  i^i  y ) ) )  <->  A. x  e.  CH  ( x  C_  y  -> 
( ( y  i^i 
A )  vH  x
)  =  ( y  i^i  ( A  vH  x ) ) ) ) )
203, 19bitrd 244 . . . . 5  |-  ( ( A  e.  CH  /\  y  e.  CH )  ->  ( A  MH  y  <->  A. x  e.  CH  (
x  C_  y  ->  ( ( y  i^i  A
)  vH  x )  =  ( y  i^i  ( A  vH  x
) ) ) ) )
2120ralbidva 2559 . . . 4  |-  ( A  e.  CH  ->  ( A. y  e.  CH  A  MH  y  <->  A. y  e.  CH  A. x  e.  CH  (
x  C_  y  ->  ( ( y  i^i  A
)  vH  x )  =  ( y  i^i  ( A  vH  x
) ) ) ) )
222, 21syl5bb 248 . . 3  |-  ( A  e.  CH  ->  ( A. x  e.  CH  A  MH  x  <->  A. y  e.  CH  A. x  e.  CH  (
x  C_  y  ->  ( ( y  i^i  A
)  vH  x )  =  ( y  i^i  ( A  vH  x
) ) ) ) )
23 ralcom 2700 . . 3  |-  ( A. y  e.  CH  A. x  e.  CH  ( x  C_  y  ->  ( ( y  i^i  A )  vH  x )  =  ( y  i^i  ( A  vH  x ) ) )  <->  A. x  e.  CH  A. y  e.  CH  (
x  C_  y  ->  ( ( y  i^i  A
)  vH  x )  =  ( y  i^i  ( A  vH  x
) ) ) )
2422, 23syl6bb 252 . 2  |-  ( A  e.  CH  ->  ( A. x  e.  CH  A  MH  x  <->  A. x  e.  CH  A. y  e.  CH  (
x  C_  y  ->  ( ( y  i^i  A
)  vH  x )  =  ( y  i^i  ( A  vH  x
) ) ) ) )
25 dmdbr 22879 . . 3  |-  ( ( A  e.  CH  /\  x  e.  CH )  ->  ( A  MH*  x  <->  A. y  e.  CH  (
x  C_  y  ->  ( ( y  i^i  A
)  vH  x )  =  ( y  i^i  ( A  vH  x
) ) ) ) )
2625ralbidva 2559 . 2  |-  ( A  e.  CH  ->  ( A. x  e.  CH  A  MH*  x  <->  A. x  e.  CH  A. y  e.  CH  (
x  C_  y  ->  ( ( y  i^i  A
)  vH  x )  =  ( y  i^i  ( A  vH  x
) ) ) ) )
2724, 26bitr4d 247 1  |-  ( A  e.  CH  ->  ( A. x  e.  CH  A  MH  x  <->  A. x  e.  CH  A  MH*  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543    i^i cin 3151    C_ wss 3152   class class class wbr 4023  (class class class)co 5858   CHcch 21509    vH chj 21513    MH cmd 21546    MH* cdmd 21547
This theorem is referenced by:  atmd  22979
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-i2m1 8805  ax-1ne0 8806  ax-rrecex 8809  ax-cnre 8810  ax-hilex 21579  ax-hfvadd 21580  ax-hv0cl 21583  ax-hfvmul 21585
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-recs 6388  df-rdg 6423  df-map 6774  df-nn 9747  df-hlim 21552  df-sh 21786  df-ch 21801  df-chj 21889  df-md 22860  df-dmd 22861
  Copyright terms: Public domain W3C validator