MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegaddle Structured version   Unicode version

Theorem mdegaddle 19989
Description: The degree of a sum is at most the maximum of the degrees of the factors. (Contributed by Stefan O'Rear, 26-Mar-2015.)
Hypotheses
Ref Expression
mdegaddle.y  |-  Y  =  ( I mPoly  R )
mdegaddle.d  |-  D  =  ( I mDeg  R )
mdegaddle.i  |-  ( ph  ->  I  e.  V )
mdegaddle.r  |-  ( ph  ->  R  e.  Ring )
mdegaddle.b  |-  B  =  ( Base `  Y
)
mdegaddle.p  |-  .+  =  ( +g  `  Y )
mdegaddle.f  |-  ( ph  ->  F  e.  B )
mdegaddle.g  |-  ( ph  ->  G  e.  B )
Assertion
Ref Expression
mdegaddle  |-  ( ph  ->  ( D `  ( F  .+  G ) )  <_  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) ) )

Proof of Theorem mdegaddle
Dummy variables  c 
a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegaddle.y . . . . . . . . . 10  |-  Y  =  ( I mPoly  R )
2 mdegaddle.b . . . . . . . . . 10  |-  B  =  ( Base `  Y
)
3 eqid 2435 . . . . . . . . . 10  |-  ( +g  `  R )  =  ( +g  `  R )
4 mdegaddle.p . . . . . . . . . 10  |-  .+  =  ( +g  `  Y )
5 mdegaddle.f . . . . . . . . . 10  |-  ( ph  ->  F  e.  B )
6 mdegaddle.g . . . . . . . . . 10  |-  ( ph  ->  G  e.  B )
71, 2, 3, 4, 5, 6mpladd 16497 . . . . . . . . 9  |-  ( ph  ->  ( F  .+  G
)  =  ( F  o F ( +g  `  R ) G ) )
87fveq1d 5722 . . . . . . . 8  |-  ( ph  ->  ( ( F  .+  G ) `  c
)  =  ( ( F  o F ( +g  `  R ) G ) `  c
) )
98adantr 452 . . . . . . 7  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( ( F  .+  G ) `  c )  =  ( ( F  o F ( +g  `  R
) G ) `  c ) )
10 eqid 2435 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
11 eqid 2435 . . . . . . . . . . 11  |-  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  =  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }
121, 10, 2, 11, 5mplelf 16489 . . . . . . . . . 10  |-  ( ph  ->  F : { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } --> ( Base `  R ) )
13 ffn 5583 . . . . . . . . . 10  |-  ( F : { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin } --> ( Base `  R )  ->  F  Fn  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin } )
1412, 13syl 16 . . . . . . . . 9  |-  ( ph  ->  F  Fn  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )
1514adantr 452 . . . . . . . 8  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  F  Fn  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )
161, 10, 2, 11, 6mplelf 16489 . . . . . . . . . 10  |-  ( ph  ->  G : { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } --> ( Base `  R ) )
17 ffn 5583 . . . . . . . . . 10  |-  ( G : { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin } --> ( Base `  R )  ->  G  Fn  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin } )
1816, 17syl 16 . . . . . . . . 9  |-  ( ph  ->  G  Fn  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )
1918adantr 452 . . . . . . . 8  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  G  Fn  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )
20 ovex 6098 . . . . . . . . . 10  |-  ( NN0 
^m  I )  e. 
_V
2120rabex 4346 . . . . . . . . 9  |-  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  e.  _V
2221a1i 11 . . . . . . . 8  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  e.  _V )
23 simpr 448 . . . . . . . 8  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )
24 fnfvof 6309 . . . . . . . 8  |-  ( ( ( F  Fn  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  /\  G  Fn  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  ( { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  e.  _V  /\  c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin } ) )  -> 
( ( F  o F ( +g  `  R
) G ) `  c )  =  ( ( F `  c
) ( +g  `  R
) ( G `  c ) ) )
2515, 19, 22, 23, 24syl22anc 1185 . . . . . . 7  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( ( F  o F ( +g  `  R ) G ) `
 c )  =  ( ( F `  c ) ( +g  `  R ) ( G `
 c ) ) )
269, 25eqtrd 2467 . . . . . 6  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( ( F  .+  G ) `  c )  =  ( ( F `  c
) ( +g  `  R
) ( G `  c ) ) )
2726adantrr 698 . . . . 5  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( ( F 
.+  G ) `  c )  =  ( ( F `  c
) ( +g  `  R
) ( G `  c ) ) )
28 mdegaddle.d . . . . . . . 8  |-  D  =  ( I mDeg  R )
29 eqid 2435 . . . . . . . 8  |-  ( 0g
`  R )  =  ( 0g `  R
)
30 eqid 2435 . . . . . . . 8  |-  ( b  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) )  =  ( b  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) )
315adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  F  e.  B
)
32 simprl 733 . . . . . . . 8  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  c  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )
3328, 1, 2mdegxrcl 19982 . . . . . . . . . . . . 13  |-  ( F  e.  B  ->  ( D `  F )  e.  RR* )
345, 33syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( D `  F
)  e.  RR* )
3534adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( D `  F )  e.  RR* )
3628, 1, 2mdegxrcl 19982 . . . . . . . . . . . . . 14  |-  ( G  e.  B  ->  ( D `  G )  e.  RR* )
376, 36syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( D `  G
)  e.  RR* )
38 ifcl 3767 . . . . . . . . . . . . 13  |-  ( ( ( D `  G
)  e.  RR*  /\  ( D `  F )  e.  RR* )  ->  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  e.  RR* )
3937, 34, 38syl2anc 643 . . . . . . . . . . . 12  |-  ( ph  ->  if ( ( D `
 F )  <_ 
( D `  G
) ,  ( D `
 G ) ,  ( D `  F
) )  e.  RR* )
4039adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  if (
( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  e. 
RR* )
41 nn0ssre 10217 . . . . . . . . . . . . 13  |-  NN0  C_  RR
42 ressxr 9121 . . . . . . . . . . . . 13  |-  RR  C_  RR*
4341, 42sstri 3349 . . . . . . . . . . . 12  |-  NN0  C_  RR*
44 mdegaddle.i . . . . . . . . . . . . . 14  |-  ( ph  ->  I  e.  V )
4511, 30tdeglem1 19973 . . . . . . . . . . . . . 14  |-  ( I  e.  V  ->  (
b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) : { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } --> NN0 )
4644, 45syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  (fld 
gsumg  b ) ) : { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin } --> NN0 )
4746ffvelrnda 5862 . . . . . . . . . . . 12  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( (
b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  c )  e.  NN0 )
4843, 47sseldi 3338 . . . . . . . . . . 11  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( (
b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  c )  e.  RR* )
4935, 40, 483jca 1134 . . . . . . . . . 10  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( ( D `  F )  e.  RR*  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  e. 
RR*  /\  ( (
b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  c )  e.  RR* ) )
5049adantrr 698 . . . . . . . . 9  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( ( D `
 F )  e. 
RR*  /\  if (
( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  e. 
RR*  /\  ( (
b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  c )  e.  RR* ) )
51 xrmax1 10755 . . . . . . . . . . . 12  |-  ( ( ( D `  F
)  e.  RR*  /\  ( D `  G )  e.  RR* )  ->  ( D `  F )  <_  if ( ( D `
 F )  <_ 
( D `  G
) ,  ( D `
 G ) ,  ( D `  F
) ) )
5234, 37, 51syl2anc 643 . . . . . . . . . . 11  |-  ( ph  ->  ( D `  F
)  <_  if (
( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) ) )
5352adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( D `  F )  <_  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) ) )
54 simprr 734 . . . . . . . . . 10  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) )
5553, 54jca 519 . . . . . . . . 9  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( ( D `
 F )  <_  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )
56 xrlelttr 10738 . . . . . . . . 9  |-  ( ( ( D `  F
)  e.  RR*  /\  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  e.  RR*  /\  (
( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  (fld 
gsumg  b ) ) `  c )  e.  RR* )  ->  ( ( ( D `  F )  <_  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  /\  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  <  ( ( b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  c ) )  ->  ( D `  F )  <  (
( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  (fld 
gsumg  b ) ) `  c ) ) )
5750, 55, 56sylc 58 . . . . . . . 8  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( D `  F )  <  (
( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  (fld 
gsumg  b ) ) `  c ) )
5828, 1, 2, 29, 11, 30, 31, 32, 57mdeglt 19980 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( F `  c )  =  ( 0g `  R ) )
596adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  G  e.  B
)
6037adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( D `  G )  e.  RR* )
6160, 40, 483jca 1134 . . . . . . . . . 10  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( ( D `  G )  e.  RR*  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  e. 
RR*  /\  ( (
b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  c )  e.  RR* ) )
6261adantrr 698 . . . . . . . . 9  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( ( D `
 G )  e. 
RR*  /\  if (
( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  e. 
RR*  /\  ( (
b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  c )  e.  RR* ) )
63 xrmax2 10756 . . . . . . . . . . . 12  |-  ( ( ( D `  F
)  e.  RR*  /\  ( D `  G )  e.  RR* )  ->  ( D `  G )  <_  if ( ( D `
 F )  <_ 
( D `  G
) ,  ( D `
 G ) ,  ( D `  F
) ) )
6434, 37, 63syl2anc 643 . . . . . . . . . . 11  |-  ( ph  ->  ( D `  G
)  <_  if (
( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) ) )
6564adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( D `  G )  <_  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) ) )
6665, 54jca 519 . . . . . . . . 9  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( ( D `
 G )  <_  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )
67 xrlelttr 10738 . . . . . . . . 9  |-  ( ( ( D `  G
)  e.  RR*  /\  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  e.  RR*  /\  (
( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  (fld 
gsumg  b ) ) `  c )  e.  RR* )  ->  ( ( ( D `  G )  <_  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  /\  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  <  ( ( b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  c ) )  ->  ( D `  G )  <  (
( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  (fld 
gsumg  b ) ) `  c ) ) )
6862, 66, 67sylc 58 . . . . . . . 8  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( D `  G )  <  (
( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  (fld 
gsumg  b ) ) `  c ) )
6928, 1, 2, 29, 11, 30, 59, 32, 68mdeglt 19980 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( G `  c )  =  ( 0g `  R ) )
7058, 69oveq12d 6091 . . . . . 6  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( ( F `
 c ) ( +g  `  R ) ( G `  c
) )  =  ( ( 0g `  R
) ( +g  `  R
) ( 0g `  R ) ) )
71 mdegaddle.r . . . . . . . . 9  |-  ( ph  ->  R  e.  Ring )
72 rnggrp 15661 . . . . . . . . 9  |-  ( R  e.  Ring  ->  R  e. 
Grp )
7371, 72syl 16 . . . . . . . 8  |-  ( ph  ->  R  e.  Grp )
7410, 29rng0cl 15677 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( 0g
`  R )  e.  ( Base `  R
) )
7571, 74syl 16 . . . . . . . 8  |-  ( ph  ->  ( 0g `  R
)  e.  ( Base `  R ) )
7610, 3, 29grplid 14827 . . . . . . . 8  |-  ( ( R  e.  Grp  /\  ( 0g `  R )  e.  ( Base `  R
) )  ->  (
( 0g `  R
) ( +g  `  R
) ( 0g `  R ) )  =  ( 0g `  R
) )
7773, 75, 76syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( ( 0g `  R ) ( +g  `  R ) ( 0g
`  R ) )  =  ( 0g `  R ) )
7877adantr 452 . . . . . 6  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( ( 0g
`  R ) ( +g  `  R ) ( 0g `  R
) )  =  ( 0g `  R ) )
7970, 78eqtrd 2467 . . . . 5  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( ( F `
 c ) ( +g  `  R ) ( G `  c
) )  =  ( 0g `  R ) )
8027, 79eqtrd 2467 . . . 4  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( ( F 
.+  G ) `  c )  =  ( 0g `  R ) )
8180expr 599 . . 3  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  <  ( ( b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  c )  ->  ( ( F 
.+  G ) `  c )  =  ( 0g `  R ) ) )
8281ralrimiva 2781 . 2  |-  ( ph  ->  A. c  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  ( if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c )  ->  (
( F  .+  G
) `  c )  =  ( 0g `  R ) ) )
831mplrng 16507 . . . . 5  |-  ( ( I  e.  V  /\  R  e.  Ring )  ->  Y  e.  Ring )
8444, 71, 83syl2anc 643 . . . 4  |-  ( ph  ->  Y  e.  Ring )
852, 4rngacl 15683 . . . 4  |-  ( ( Y  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( F  .+  G )  e.  B )
8684, 5, 6, 85syl3anc 1184 . . 3  |-  ( ph  ->  ( F  .+  G
)  e.  B )
8728, 1, 2, 29, 11, 30mdegleb 19979 . . 3  |-  ( ( ( F  .+  G
)  e.  B  /\  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  e.  RR* )  ->  ( ( D `  ( F  .+  G ) )  <_  if (
( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  <->  A. c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  ( if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  <  ( ( b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  c )  ->  ( ( F 
.+  G ) `  c )  =  ( 0g `  R ) ) ) )
8886, 39, 87syl2anc 643 . 2  |-  ( ph  ->  ( ( D `  ( F  .+  G ) )  <_  if (
( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  <->  A. c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  ( if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  <  ( ( b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  c )  ->  ( ( F 
.+  G ) `  c )  =  ( 0g `  R ) ) ) )
8982, 88mpbird 224 1  |-  ( ph  ->  ( D `  ( F  .+  G ) )  <_  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   {crab 2701   _Vcvv 2948   ifcif 3731   class class class wbr 4204    e. cmpt 4258   `'ccnv 4869   "cima 4873    Fn wfn 5441   -->wf 5442   ` cfv 5446  (class class class)co 6073    o Fcof 6295    ^m cmap 7010   Fincfn 7101   RRcr 8981   RR*cxr 9111    < clt 9112    <_ cle 9113   NNcn 9992   NN0cn0 10213   Basecbs 13461   +g cplusg 13521   0gc0g 13715    gsumg cgsu 13716   Grpcgrp 14677   Ringcrg 15652   mPoly cmpl 16400  ℂfldccnfld 16695   mDeg cmdg 19968
This theorem is referenced by:  deg1addle  20016
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-ofr 6298  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7471  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-fz 11036  df-fzo 11128  df-seq 11316  df-hash 11611  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-starv 13536  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-0g 13719  df-gsum 13720  df-mre 13803  df-mrc 13804  df-acs 13806  df-mnd 14682  df-mhm 14730  df-submnd 14731  df-grp 14804  df-minusg 14805  df-mulg 14807  df-subg 14933  df-ghm 14996  df-cntz 15108  df-cmn 15406  df-abl 15407  df-mgp 15641  df-rng 15655  df-cring 15656  df-ur 15657  df-subrg 15858  df-psr 16409  df-mpl 16411  df-cnfld 16696  df-mdeg 19970
  Copyright terms: Public domain W3C validator