MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegaddle Unicode version

Theorem mdegaddle 19460
Description: The degree of a sum is at most the maximum of the degrees of the factors. (Contributed by Stefan O'Rear, 26-Mar-2015.)
Hypotheses
Ref Expression
mdegaddle.y  |-  Y  =  ( I mPoly  R )
mdegaddle.d  |-  D  =  ( I mDeg  R )
mdegaddle.i  |-  ( ph  ->  I  e.  V )
mdegaddle.r  |-  ( ph  ->  R  e.  Ring )
mdegaddle.b  |-  B  =  ( Base `  Y
)
mdegaddle.p  |-  .+  =  ( +g  `  Y )
mdegaddle.f  |-  ( ph  ->  F  e.  B )
mdegaddle.g  |-  ( ph  ->  G  e.  B )
Assertion
Ref Expression
mdegaddle  |-  ( ph  ->  ( D `  ( F  .+  G ) )  <_  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) ) )

Proof of Theorem mdegaddle
Dummy variables  c 
a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegaddle.y . . . . . . . . . 10  |-  Y  =  ( I mPoly  R )
2 mdegaddle.b . . . . . . . . . 10  |-  B  =  ( Base `  Y
)
3 eqid 2283 . . . . . . . . . 10  |-  ( +g  `  R )  =  ( +g  `  R )
4 mdegaddle.p . . . . . . . . . 10  |-  .+  =  ( +g  `  Y )
5 mdegaddle.f . . . . . . . . . 10  |-  ( ph  ->  F  e.  B )
6 mdegaddle.g . . . . . . . . . 10  |-  ( ph  ->  G  e.  B )
71, 2, 3, 4, 5, 6mpladd 16186 . . . . . . . . 9  |-  ( ph  ->  ( F  .+  G
)  =  ( F  o F ( +g  `  R ) G ) )
87fveq1d 5527 . . . . . . . 8  |-  ( ph  ->  ( ( F  .+  G ) `  c
)  =  ( ( F  o F ( +g  `  R ) G ) `  c
) )
98adantr 451 . . . . . . 7  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( ( F  .+  G ) `  c )  =  ( ( F  o F ( +g  `  R
) G ) `  c ) )
10 eqid 2283 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
11 eqid 2283 . . . . . . . . . . 11  |-  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  =  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }
121, 10, 2, 11, 5mplelf 16178 . . . . . . . . . 10  |-  ( ph  ->  F : { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } --> ( Base `  R ) )
13 ffn 5389 . . . . . . . . . 10  |-  ( F : { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin } --> ( Base `  R )  ->  F  Fn  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin } )
1412, 13syl 15 . . . . . . . . 9  |-  ( ph  ->  F  Fn  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )
1514adantr 451 . . . . . . . 8  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  F  Fn  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )
161, 10, 2, 11, 6mplelf 16178 . . . . . . . . . 10  |-  ( ph  ->  G : { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } --> ( Base `  R ) )
17 ffn 5389 . . . . . . . . . 10  |-  ( G : { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin } --> ( Base `  R )  ->  G  Fn  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin } )
1816, 17syl 15 . . . . . . . . 9  |-  ( ph  ->  G  Fn  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )
1918adantr 451 . . . . . . . 8  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  G  Fn  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )
20 ovex 5883 . . . . . . . . . 10  |-  ( NN0 
^m  I )  e. 
_V
2120rabex 4165 . . . . . . . . 9  |-  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  e.  _V
2221a1i 10 . . . . . . . 8  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  e.  _V )
23 simpr 447 . . . . . . . 8  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )
24 fnfvof 6090 . . . . . . . 8  |-  ( ( ( F  Fn  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  /\  G  Fn  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  ( { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  e.  _V  /\  c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin } ) )  -> 
( ( F  o F ( +g  `  R
) G ) `  c )  =  ( ( F `  c
) ( +g  `  R
) ( G `  c ) ) )
2515, 19, 22, 23, 24syl22anc 1183 . . . . . . 7  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( ( F  o F ( +g  `  R ) G ) `
 c )  =  ( ( F `  c ) ( +g  `  R ) ( G `
 c ) ) )
269, 25eqtrd 2315 . . . . . 6  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( ( F  .+  G ) `  c )  =  ( ( F `  c
) ( +g  `  R
) ( G `  c ) ) )
2726adantrr 697 . . . . 5  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( ( F 
.+  G ) `  c )  =  ( ( F `  c
) ( +g  `  R
) ( G `  c ) ) )
28 mdegaddle.d . . . . . . . 8  |-  D  =  ( I mDeg  R )
29 eqid 2283 . . . . . . . 8  |-  ( 0g
`  R )  =  ( 0g `  R
)
30 eqid 2283 . . . . . . . 8  |-  ( b  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) )  =  ( b  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) )
315adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  F  e.  B
)
32 simprl 732 . . . . . . . 8  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  c  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )
3328, 1, 2mdegxrcl 19453 . . . . . . . . . . . . 13  |-  ( F  e.  B  ->  ( D `  F )  e.  RR* )
345, 33syl 15 . . . . . . . . . . . 12  |-  ( ph  ->  ( D `  F
)  e.  RR* )
3534adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( D `  F )  e.  RR* )
3628, 1, 2mdegxrcl 19453 . . . . . . . . . . . . . 14  |-  ( G  e.  B  ->  ( D `  G )  e.  RR* )
376, 36syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  ( D `  G
)  e.  RR* )
38 ifcl 3601 . . . . . . . . . . . . 13  |-  ( ( ( D `  G
)  e.  RR*  /\  ( D `  F )  e.  RR* )  ->  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  e.  RR* )
3937, 34, 38syl2anc 642 . . . . . . . . . . . 12  |-  ( ph  ->  if ( ( D `
 F )  <_ 
( D `  G
) ,  ( D `
 G ) ,  ( D `  F
) )  e.  RR* )
4039adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  if (
( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  e. 
RR* )
41 nn0ssre 9969 . . . . . . . . . . . . 13  |-  NN0  C_  RR
42 ressxr 8876 . . . . . . . . . . . . 13  |-  RR  C_  RR*
4341, 42sstri 3188 . . . . . . . . . . . 12  |-  NN0  C_  RR*
44 mdegaddle.i . . . . . . . . . . . . . 14  |-  ( ph  ->  I  e.  V )
4511, 30tdeglem1 19444 . . . . . . . . . . . . . 14  |-  ( I  e.  V  ->  (
b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) : { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } --> NN0 )
4644, 45syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  ( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  (fld 
gsumg  b ) ) : { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin } --> NN0 )
47 ffvelrn 5663 . . . . . . . . . . . . 13  |-  ( ( ( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  (fld 
gsumg  b ) ) : { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin } --> NN0  /\  c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin } )  ->  (
( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  (fld 
gsumg  b ) ) `  c )  e.  NN0 )
4846, 47sylan 457 . . . . . . . . . . . 12  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( (
b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  c )  e.  NN0 )
4943, 48sseldi 3178 . . . . . . . . . . 11  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( (
b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  c )  e.  RR* )
5035, 40, 493jca 1132 . . . . . . . . . 10  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( ( D `  F )  e.  RR*  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  e. 
RR*  /\  ( (
b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  c )  e.  RR* ) )
5150adantrr 697 . . . . . . . . 9  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( ( D `
 F )  e. 
RR*  /\  if (
( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  e. 
RR*  /\  ( (
b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  c )  e.  RR* ) )
52 xrmax1 10504 . . . . . . . . . . . 12  |-  ( ( ( D `  F
)  e.  RR*  /\  ( D `  G )  e.  RR* )  ->  ( D `  F )  <_  if ( ( D `
 F )  <_ 
( D `  G
) ,  ( D `
 G ) ,  ( D `  F
) ) )
5334, 37, 52syl2anc 642 . . . . . . . . . . 11  |-  ( ph  ->  ( D `  F
)  <_  if (
( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) ) )
5453adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( D `  F )  <_  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) ) )
55 simprr 733 . . . . . . . . . 10  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) )
5654, 55jca 518 . . . . . . . . 9  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( ( D `
 F )  <_  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )
57 xrlelttr 10487 . . . . . . . . 9  |-  ( ( ( D `  F
)  e.  RR*  /\  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  e.  RR*  /\  (
( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  (fld 
gsumg  b ) ) `  c )  e.  RR* )  ->  ( ( ( D `  F )  <_  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  /\  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  <  ( ( b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  c ) )  ->  ( D `  F )  <  (
( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  (fld 
gsumg  b ) ) `  c ) ) )
5851, 56, 57sylc 56 . . . . . . . 8  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( D `  F )  <  (
( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  (fld 
gsumg  b ) ) `  c ) )
5928, 1, 2, 29, 11, 30, 31, 32, 58mdeglt 19451 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( F `  c )  =  ( 0g `  R ) )
606adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  G  e.  B
)
6137adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( D `  G )  e.  RR* )
6261, 40, 493jca 1132 . . . . . . . . . 10  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( ( D `  G )  e.  RR*  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  e. 
RR*  /\  ( (
b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  c )  e.  RR* ) )
6362adantrr 697 . . . . . . . . 9  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( ( D `
 G )  e. 
RR*  /\  if (
( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  e. 
RR*  /\  ( (
b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  c )  e.  RR* ) )
64 xrmax2 10505 . . . . . . . . . . . 12  |-  ( ( ( D `  F
)  e.  RR*  /\  ( D `  G )  e.  RR* )  ->  ( D `  G )  <_  if ( ( D `
 F )  <_ 
( D `  G
) ,  ( D `
 G ) ,  ( D `  F
) ) )
6534, 37, 64syl2anc 642 . . . . . . . . . . 11  |-  ( ph  ->  ( D `  G
)  <_  if (
( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) ) )
6665adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( D `  G )  <_  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) ) )
6766, 55jca 518 . . . . . . . . 9  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( ( D `
 G )  <_  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )
68 xrlelttr 10487 . . . . . . . . 9  |-  ( ( ( D `  G
)  e.  RR*  /\  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  e.  RR*  /\  (
( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  (fld 
gsumg  b ) ) `  c )  e.  RR* )  ->  ( ( ( D `  G )  <_  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  /\  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  <  ( ( b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  c ) )  ->  ( D `  G )  <  (
( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  (fld 
gsumg  b ) ) `  c ) ) )
6963, 67, 68sylc 56 . . . . . . . 8  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( D `  G )  <  (
( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  (fld 
gsumg  b ) ) `  c ) )
7028, 1, 2, 29, 11, 30, 60, 32, 69mdeglt 19451 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( G `  c )  =  ( 0g `  R ) )
7159, 70oveq12d 5876 . . . . . 6  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( ( F `
 c ) ( +g  `  R ) ( G `  c
) )  =  ( ( 0g `  R
) ( +g  `  R
) ( 0g `  R ) ) )
72 mdegaddle.r . . . . . . . . 9  |-  ( ph  ->  R  e.  Ring )
73 rnggrp 15346 . . . . . . . . 9  |-  ( R  e.  Ring  ->  R  e. 
Grp )
7472, 73syl 15 . . . . . . . 8  |-  ( ph  ->  R  e.  Grp )
7510, 29rng0cl 15362 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( 0g
`  R )  e.  ( Base `  R
) )
7672, 75syl 15 . . . . . . . 8  |-  ( ph  ->  ( 0g `  R
)  e.  ( Base `  R ) )
7710, 3, 29grplid 14512 . . . . . . . 8  |-  ( ( R  e.  Grp  /\  ( 0g `  R )  e.  ( Base `  R
) )  ->  (
( 0g `  R
) ( +g  `  R
) ( 0g `  R ) )  =  ( 0g `  R
) )
7874, 76, 77syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( ( 0g `  R ) ( +g  `  R ) ( 0g
`  R ) )  =  ( 0g `  R ) )
7978adantr 451 . . . . . 6  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( ( 0g
`  R ) ( +g  `  R ) ( 0g `  R
) )  =  ( 0g `  R ) )
8071, 79eqtrd 2315 . . . . 5  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( ( F `
 c ) ( +g  `  R ) ( G `  c
) )  =  ( 0g `  R ) )
8127, 80eqtrd 2315 . . . 4  |-  ( (
ph  /\  ( c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  /\  if ( ( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c ) ) )  ->  ( ( F 
.+  G ) `  c )  =  ( 0g `  R ) )
8281expr 598 . . 3  |-  ( (
ph  /\  c  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  <  ( ( b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  c )  ->  ( ( F 
.+  G ) `  c )  =  ( 0g `  R ) ) )
8382ralrimiva 2626 . 2  |-  ( ph  ->  A. c  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  ( if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  < 
( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  c )  ->  (
( F  .+  G
) `  c )  =  ( 0g `  R ) ) )
841mplrng 16196 . . . . 5  |-  ( ( I  e.  V  /\  R  e.  Ring )  ->  Y  e.  Ring )
8544, 72, 84syl2anc 642 . . . 4  |-  ( ph  ->  Y  e.  Ring )
862, 4rngacl 15368 . . . 4  |-  ( ( Y  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( F  .+  G )  e.  B )
8785, 5, 6, 86syl3anc 1182 . . 3  |-  ( ph  ->  ( F  .+  G
)  e.  B )
8828, 1, 2, 29, 11, 30mdegleb 19450 . . 3  |-  ( ( ( F  .+  G
)  e.  B  /\  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  e.  RR* )  ->  ( ( D `  ( F  .+  G ) )  <_  if (
( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  <->  A. c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  ( if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  <  ( ( b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  c )  ->  ( ( F 
.+  G ) `  c )  =  ( 0g `  R ) ) ) )
8987, 39, 88syl2anc 642 . 2  |-  ( ph  ->  ( ( D `  ( F  .+  G ) )  <_  if (
( D `  F
)  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  <->  A. c  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  ( if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) )  <  ( ( b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  c )  ->  ( ( F 
.+  G ) `  c )  =  ( 0g `  R ) ) ) )
9083, 89mpbird 223 1  |-  ( ph  ->  ( D `  ( F  .+  G ) )  <_  if ( ( D `  F )  <_  ( D `  G ) ,  ( D `  G ) ,  ( D `  F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   {crab 2547   _Vcvv 2788   ifcif 3565   class class class wbr 4023    e. cmpt 4077   `'ccnv 4688   "cima 4692    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858    o Fcof 6076    ^m cmap 6772   Fincfn 6863   RRcr 8736   RR*cxr 8866    < clt 8867    <_ cle 8868   NNcn 9746   NN0cn0 9965   Basecbs 13148   +g cplusg 13208   0gc0g 13400    gsumg cgsu 13401   Grpcgrp 14362   Ringcrg 15337   mPoly cmpl 16089  ℂfldccnfld 16377   mDeg cmdg 19439
This theorem is referenced by:  deg1addle  19487
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-ofr 6079  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-fz 10783  df-fzo 10871  df-seq 11047  df-hash 11338  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-0g 13404  df-gsum 13405  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-mhm 14415  df-submnd 14416  df-grp 14489  df-minusg 14490  df-mulg 14492  df-subg 14618  df-ghm 14681  df-cntz 14793  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-cring 15341  df-ur 15342  df-subrg 15543  df-psr 16098  df-mpl 16100  df-cnfld 16378  df-mdeg 19441
  Copyright terms: Public domain W3C validator