MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegle0 Unicode version

Theorem mdegle0 19953
Description: A polynomial has nonpositive degree iff it is a constant. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
mdegaddle.y  |-  Y  =  ( I mPoly  R )
mdegaddle.d  |-  D  =  ( I mDeg  R )
mdegaddle.i  |-  ( ph  ->  I  e.  V )
mdegaddle.r  |-  ( ph  ->  R  e.  Ring )
mdegle0.b  |-  B  =  ( Base `  Y
)
mdegle0.a  |-  A  =  (algSc `  Y )
mdegle0.f  |-  ( ph  ->  F  e.  B )
Assertion
Ref Expression
mdegle0  |-  ( ph  ->  ( ( D `  F )  <_  0  <->  F  =  ( A `  ( F `  ( I  X.  { 0 } ) ) ) ) )

Proof of Theorem mdegle0
Dummy variables  x  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegle0.f . . 3  |-  ( ph  ->  F  e.  B )
2 0xr 9087 . . 3  |-  0  e.  RR*
3 mdegaddle.d . . . 4  |-  D  =  ( I mDeg  R )
4 mdegaddle.y . . . 4  |-  Y  =  ( I mPoly  R )
5 mdegle0.b . . . 4  |-  B  =  ( Base `  Y
)
6 eqid 2404 . . . 4  |-  ( 0g
`  R )  =  ( 0g `  R
)
7 eqid 2404 . . . 4  |-  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  =  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }
8 eqid 2404 . . . 4  |-  ( b  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) )  =  ( b  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) )
93, 4, 5, 6, 7, 8mdegleb 19940 . . 3  |-  ( ( F  e.  B  /\  0  e.  RR* )  -> 
( ( D `  F )  <_  0  <->  A. x  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  (
0  <  ( (
b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  x )  ->  ( F `  x )  =  ( 0g `  R ) ) ) )
101, 2, 9sylancl 644 . 2  |-  ( ph  ->  ( ( D `  F )  <_  0  <->  A. x  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  (
0  <  ( (
b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  x )  ->  ( F `  x )  =  ( 0g `  R ) ) ) )
11 mdegaddle.i . . . . . . . . . 10  |-  ( ph  ->  I  e.  V )
127, 8tdeglem1 19934 . . . . . . . . . 10  |-  ( I  e.  V  ->  (
b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) : { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } --> NN0 )
1311, 12syl 16 . . . . . . . . 9  |-  ( ph  ->  ( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  (fld 
gsumg  b ) ) : { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin } --> NN0 )
1413ffvelrnda 5829 . . . . . . . 8  |-  ( (
ph  /\  x  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( (
b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  x )  e.  NN0 )
15 nn0re 10186 . . . . . . . . 9  |-  ( ( ( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  (fld 
gsumg  b ) ) `  x )  e.  NN0  ->  ( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  x )  e.  RR )
16 nn0ge0 10203 . . . . . . . . 9  |-  ( ( ( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  (fld 
gsumg  b ) ) `  x )  e.  NN0  ->  0  <_  ( (
b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  x ) )
1715, 16jca 519 . . . . . . . 8  |-  ( ( ( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  (fld 
gsumg  b ) ) `  x )  e.  NN0  ->  ( ( ( b  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  x )  e.  RR  /\  0  <_  ( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  x ) ) )
18 ne0gt0 9134 . . . . . . . 8  |-  ( ( ( ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  (fld  gsumg  b ) ) `  x )  e.  RR  /\  0  <_  ( (
b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  x ) )  ->  ( (
( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  (fld 
gsumg  b ) ) `  x )  =/=  0  <->  0  <  ( ( b  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  x ) ) )
1914, 17, 183syl 19 . . . . . . 7  |-  ( (
ph  /\  x  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( (
( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  (fld 
gsumg  b ) ) `  x )  =/=  0  <->  0  <  ( ( b  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  x ) ) )
207, 8tdeglem4 19936 . . . . . . . . 9  |-  ( ( I  e.  V  /\  x  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin } )  ->  ( ( ( b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  x )  =  0  <->  x  =  ( I  X.  { 0 } ) ) )
2111, 20sylan 458 . . . . . . . 8  |-  ( (
ph  /\  x  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( (
( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  (fld 
gsumg  b ) ) `  x )  =  0  <-> 
x  =  ( I  X.  { 0 } ) ) )
2221necon3abid 2600 . . . . . . 7  |-  ( (
ph  /\  x  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( (
( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  (fld 
gsumg  b ) ) `  x )  =/=  0  <->  -.  x  =  ( I  X.  { 0 } ) ) )
2319, 22bitr3d 247 . . . . . 6  |-  ( (
ph  /\  x  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( 0  <  ( ( b  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  x )  <->  -.  x  =  (
I  X.  { 0 } ) ) )
2423imbi1d 309 . . . . 5  |-  ( (
ph  /\  x  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( (
0  <  ( (
b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  x )  ->  ( F `  x )  =  ( 0g `  R ) )  <->  ( -.  x  =  ( I  X.  { 0 } )  ->  ( F `  x )  =  ( 0g `  R ) ) ) )
25 eqeq2 2413 . . . . . . . 8  |-  ( ( F `  ( I  X.  { 0 } ) )  =  if ( x  =  ( I  X.  { 0 } ) ,  ( F `  ( I  X.  { 0 } ) ) ,  ( 0g `  R ) )  ->  ( ( F `  x )  =  ( F `  ( I  X.  { 0 } ) )  <->  ( F `  x )  =  if ( x  =  ( I  X.  { 0 } ) ,  ( F `  ( I  X.  { 0 } ) ) ,  ( 0g `  R ) ) ) )
2625bibi1d 311 . . . . . . 7  |-  ( ( F `  ( I  X.  { 0 } ) )  =  if ( x  =  ( I  X.  { 0 } ) ,  ( F `  ( I  X.  { 0 } ) ) ,  ( 0g `  R ) )  ->  ( (
( F `  x
)  =  ( F `
 ( I  X.  { 0 } ) )  <->  ( -.  x  =  ( I  X.  { 0 } )  ->  ( F `  x )  =  ( 0g `  R ) ) )  <->  ( ( F `  x )  =  if ( x  =  ( I  X.  {
0 } ) ,  ( F `  (
I  X.  { 0 } ) ) ,  ( 0g `  R
) )  <->  ( -.  x  =  ( I  X.  { 0 } )  ->  ( F `  x )  =  ( 0g `  R ) ) ) ) )
27 eqeq2 2413 . . . . . . . 8  |-  ( ( 0g `  R )  =  if ( x  =  ( I  X.  { 0 } ) ,  ( F `  ( I  X.  { 0 } ) ) ,  ( 0g `  R
) )  ->  (
( F `  x
)  =  ( 0g
`  R )  <->  ( F `  x )  =  if ( x  =  ( I  X.  { 0 } ) ,  ( F `  ( I  X.  { 0 } ) ) ,  ( 0g `  R ) ) ) )
2827bibi1d 311 . . . . . . 7  |-  ( ( 0g `  R )  =  if ( x  =  ( I  X.  { 0 } ) ,  ( F `  ( I  X.  { 0 } ) ) ,  ( 0g `  R
) )  ->  (
( ( F `  x )  =  ( 0g `  R )  <-> 
( -.  x  =  ( I  X.  {
0 } )  -> 
( F `  x
)  =  ( 0g
`  R ) ) )  <->  ( ( F `
 x )  =  if ( x  =  ( I  X.  {
0 } ) ,  ( F `  (
I  X.  { 0 } ) ) ,  ( 0g `  R
) )  <->  ( -.  x  =  ( I  X.  { 0 } )  ->  ( F `  x )  =  ( 0g `  R ) ) ) ) )
29 fveq2 5687 . . . . . . . . 9  |-  ( x  =  ( I  X.  { 0 } )  ->  ( F `  x )  =  ( F `  ( I  X.  { 0 } ) ) )
30 pm2.24 103 . . . . . . . . 9  |-  ( x  =  ( I  X.  { 0 } )  ->  ( -.  x  =  ( I  X.  { 0 } )  ->  ( F `  x )  =  ( 0g `  R ) ) )
3129, 302thd 232 . . . . . . . 8  |-  ( x  =  ( I  X.  { 0 } )  ->  ( ( F `
 x )  =  ( F `  (
I  X.  { 0 } ) )  <->  ( -.  x  =  ( I  X.  { 0 } )  ->  ( F `  x )  =  ( 0g `  R ) ) ) )
3231adantl 453 . . . . . . 7  |-  ( (
ph  /\  x  =  ( I  X.  { 0 } ) )  -> 
( ( F `  x )  =  ( F `  ( I  X.  { 0 } ) )  <->  ( -.  x  =  ( I  X.  { 0 } )  ->  ( F `  x )  =  ( 0g `  R ) ) ) )
33 biimt 326 . . . . . . . 8  |-  ( -.  x  =  ( I  X.  { 0 } )  ->  ( ( F `  x )  =  ( 0g `  R )  <->  ( -.  x  =  ( I  X.  { 0 } )  ->  ( F `  x )  =  ( 0g `  R ) ) ) )
3433adantl 453 . . . . . . 7  |-  ( (
ph  /\  -.  x  =  ( I  X.  { 0 } ) )  ->  ( ( F `  x )  =  ( 0g `  R )  <->  ( -.  x  =  ( I  X.  { 0 } )  ->  ( F `  x )  =  ( 0g `  R ) ) ) )
3526, 28, 32, 34ifbothda 3729 . . . . . 6  |-  ( ph  ->  ( ( F `  x )  =  if ( x  =  ( I  X.  { 0 } ) ,  ( F `  ( I  X.  { 0 } ) ) ,  ( 0g `  R ) )  <->  ( -.  x  =  ( I  X.  { 0 } )  ->  ( F `  x )  =  ( 0g `  R ) ) ) )
3635adantr 452 . . . . 5  |-  ( (
ph  /\  x  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( ( F `  x )  =  if ( x  =  ( I  X.  {
0 } ) ,  ( F `  (
I  X.  { 0 } ) ) ,  ( 0g `  R
) )  <->  ( -.  x  =  ( I  X.  { 0 } )  ->  ( F `  x )  =  ( 0g `  R ) ) ) )
3724, 36bitr4d 248 . . . 4  |-  ( (
ph  /\  x  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( (
0  <  ( (
b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  x )  ->  ( F `  x )  =  ( 0g `  R ) )  <->  ( F `  x )  =  if ( x  =  ( I  X.  { 0 } ) ,  ( F `  ( I  X.  { 0 } ) ) ,  ( 0g `  R ) ) ) )
3837ralbidva 2682 . . 3  |-  ( ph  ->  ( A. x  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  ( 0  <  ( ( b  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  x )  ->  ( F `  x )  =  ( 0g `  R ) )  <->  A. x  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  ( F `  x
)  =  if ( x  =  ( I  X.  { 0 } ) ,  ( F `
 ( I  X.  { 0 } ) ) ,  ( 0g
`  R ) ) ) )
39 eqid 2404 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
404, 39, 5, 7, 1mplelf 16452 . . . . . 6  |-  ( ph  ->  F : { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } --> ( Base `  R ) )
4140feqmptd 5738 . . . . 5  |-  ( ph  ->  F  =  ( x  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  |->  ( F `  x ) ) )
42 mdegle0.a . . . . . 6  |-  A  =  (algSc `  Y )
43 mdegaddle.r . . . . . 6  |-  ( ph  ->  R  e.  Ring )
447psrbag0 16509 . . . . . . . 8  |-  ( I  e.  V  ->  (
I  X.  { 0 } )  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )
4511, 44syl 16 . . . . . . 7  |-  ( ph  ->  ( I  X.  {
0 } )  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin } )
4640, 45ffvelrnd 5830 . . . . . 6  |-  ( ph  ->  ( F `  (
I  X.  { 0 } ) )  e.  ( Base `  R
) )
474, 7, 6, 39, 42, 11, 43, 46mplascl 16511 . . . . 5  |-  ( ph  ->  ( A `  ( F `  ( I  X.  { 0 } ) ) )  =  ( x  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  if ( x  =  ( I  X.  { 0 } ) ,  ( F `  ( I  X.  { 0 } ) ) ,  ( 0g `  R ) ) ) )
4841, 47eqeq12d 2418 . . . 4  |-  ( ph  ->  ( F  =  ( A `  ( F `
 ( I  X.  { 0 } ) ) )  <->  ( x  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  ( F `
 x ) )  =  ( x  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  if ( x  =  ( I  X.  { 0 } ) ,  ( F `
 ( I  X.  { 0 } ) ) ,  ( 0g
`  R ) ) ) ) )
49 fvex 5701 . . . . . 6  |-  ( F `
 x )  e. 
_V
5049rgenw 2733 . . . . 5  |-  A. x  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  ( F `  x )  e.  _V
51 mpteqb 5778 . . . . 5  |-  ( A. x  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  ( F `  x )  e.  _V  ->  ( (
x  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  ( F `  x ) )  =  ( x  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  |->  if ( x  =  ( I  X.  { 0 } ) ,  ( F `  ( I  X.  { 0 } ) ) ,  ( 0g `  R ) ) )  <->  A. x  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  ( F `  x )  =  if ( x  =  ( I  X.  { 0 } ) ,  ( F `  ( I  X.  { 0 } ) ) ,  ( 0g `  R ) ) ) )
5250, 51mp1i 12 . . . 4  |-  ( ph  ->  ( ( x  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  ( F `
 x ) )  =  ( x  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  if ( x  =  ( I  X.  { 0 } ) ,  ( F `
 ( I  X.  { 0 } ) ) ,  ( 0g
`  R ) ) )  <->  A. x  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  ( F `  x
)  =  if ( x  =  ( I  X.  { 0 } ) ,  ( F `
 ( I  X.  { 0 } ) ) ,  ( 0g
`  R ) ) ) )
5348, 52bitrd 245 . . 3  |-  ( ph  ->  ( F  =  ( A `  ( F `
 ( I  X.  { 0 } ) ) )  <->  A. x  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  ( F `  x )  =  if ( x  =  ( I  X.  { 0 } ) ,  ( F `  ( I  X.  { 0 } ) ) ,  ( 0g `  R ) ) ) )
5438, 53bitr4d 248 . 2  |-  ( ph  ->  ( A. x  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  ( 0  <  ( ( b  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  |->  (fld  gsumg  b ) ) `  x )  ->  ( F `  x )  =  ( 0g `  R ) )  <->  F  =  ( A `  ( F `  ( I  X.  {
0 } ) ) ) ) )
5510, 54bitrd 245 1  |-  ( ph  ->  ( ( D `  F )  <_  0  <->  F  =  ( A `  ( F `  ( I  X.  { 0 } ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   {crab 2670   _Vcvv 2916   ifcif 3699   {csn 3774   class class class wbr 4172    e. cmpt 4226    X. cxp 4835   `'ccnv 4836   "cima 4840   -->wf 5409   ` cfv 5413  (class class class)co 6040    ^m cmap 6977   Fincfn 7068   RRcr 8945   0cc0 8946   RR*cxr 9075    < clt 9076    <_ cle 9077   NNcn 9956   NN0cn0 10177   Basecbs 13424   0gc0g 13678    gsumg cgsu 13679   Ringcrg 15615  algSccascl 16326   mPoly cmpl 16363  ℂfldccnfld 16658   mDeg cmdg 19929
This theorem is referenced by:  deg1le0  19987
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-ofr 6265  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-fz 11000  df-fzo 11091  df-seq 11279  df-hash 11574  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-0g 13682  df-gsum 13683  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-mhm 14693  df-submnd 14694  df-grp 14767  df-minusg 14768  df-mulg 14770  df-subg 14896  df-ghm 14959  df-cntz 15071  df-cmn 15369  df-abl 15370  df-mgp 15604  df-rng 15618  df-cring 15619  df-ur 15620  df-subrg 15821  df-ascl 16329  df-psr 16372  df-mpl 16374  df-cnfld 16659  df-mdeg 19931
  Copyright terms: Public domain W3C validator