MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegleb Structured version   Unicode version

Theorem mdegleb 19979
Description: Property of being of limited degree. (Contributed by Stefan O'Rear, 19-Mar-2015.)
Hypotheses
Ref Expression
mdegval.d  |-  D  =  ( I mDeg  R )
mdegval.p  |-  P  =  ( I mPoly  R )
mdegval.b  |-  B  =  ( Base `  P
)
mdegval.z  |-  .0.  =  ( 0g `  R )
mdegval.a  |-  A  =  { m  e.  ( NN0  ^m  I )  |  ( `' m " NN )  e.  Fin }
mdegval.h  |-  H  =  ( h  e.  A  |->  (fld 
gsumg  h ) )
Assertion
Ref Expression
mdegleb  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( ( D `  F )  <_  G  <->  A. x  e.  A  ( G  <  ( H `
 x )  -> 
( F `  x
)  =  .0.  )
) )
Distinct variable groups:    A, h    m, I    .0. , h    x, A   
x, B    x, F    x, G    x, H    h, I    x, R    x,  .0.    h, m
Allowed substitution hints:    A( m)    B( h, m)    D( x, h, m)    P( x, h, m)    R( h, m)    F( h, m)    G( h, m)    H( h, m)    I( x)    .0. ( m)

Proof of Theorem mdegleb
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 mdegval.d . . . . 5  |-  D  =  ( I mDeg  R )
2 mdegval.p . . . . 5  |-  P  =  ( I mPoly  R )
3 mdegval.b . . . . 5  |-  B  =  ( Base `  P
)
4 mdegval.z . . . . 5  |-  .0.  =  ( 0g `  R )
5 mdegval.a . . . . 5  |-  A  =  { m  e.  ( NN0  ^m  I )  |  ( `' m " NN )  e.  Fin }
6 mdegval.h . . . . 5  |-  H  =  ( h  e.  A  |->  (fld 
gsumg  h ) )
71, 2, 3, 4, 5, 6mdegval 19978 . . . 4  |-  ( F  e.  B  ->  ( D `  F )  =  sup ( ( H
" ( `' F " ( _V  \  {  .0.  } ) ) ) ,  RR* ,  <  )
)
87adantr 452 . . 3  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( D `  F
)  =  sup (
( H " ( `' F " ( _V 
\  {  .0.  }
) ) ) , 
RR* ,  <  ) )
98breq1d 4214 . 2  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( ( D `  F )  <_  G  <->  sup ( ( H "
( `' F "
( _V  \  {  .0.  } ) ) ) ,  RR* ,  <  )  <_  G ) )
10 imassrn 5208 . . . 4  |-  ( H
" ( `' F " ( _V  \  {  .0.  } ) ) ) 
C_  ran  H
112, 3mplrcl 16542 . . . . . . . 8  |-  ( F  e.  B  ->  I  e.  _V )
1211adantr 452 . . . . . . 7  |-  ( ( F  e.  B  /\  G  e.  RR* )  ->  I  e.  _V )
135, 6tdeglem1 19973 . . . . . . 7  |-  ( I  e.  _V  ->  H : A --> NN0 )
1412, 13syl 16 . . . . . 6  |-  ( ( F  e.  B  /\  G  e.  RR* )  ->  H : A --> NN0 )
15 frn 5589 . . . . . 6  |-  ( H : A --> NN0  ->  ran 
H  C_  NN0 )
1614, 15syl 16 . . . . 5  |-  ( ( F  e.  B  /\  G  e.  RR* )  ->  ran  H  C_  NN0 )
17 nn0ssre 10217 . . . . . 6  |-  NN0  C_  RR
18 ressxr 9121 . . . . . 6  |-  RR  C_  RR*
1917, 18sstri 3349 . . . . 5  |-  NN0  C_  RR*
2016, 19syl6ss 3352 . . . 4  |-  ( ( F  e.  B  /\  G  e.  RR* )  ->  ran  H  C_  RR* )
2110, 20syl5ss 3351 . . 3  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( H " ( `' F " ( _V 
\  {  .0.  }
) ) )  C_  RR* )
22 supxrleub 10897 . . 3  |-  ( ( ( H " ( `' F " ( _V 
\  {  .0.  }
) ) )  C_  RR* 
/\  G  e.  RR* )  ->  ( sup (
( H " ( `' F " ( _V 
\  {  .0.  }
) ) ) , 
RR* ,  <  )  <_  G 
<-> 
A. y  e.  ( H " ( `' F " ( _V 
\  {  .0.  }
) ) ) y  <_  G ) )
2321, 22sylancom 649 . 2  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( sup ( ( H " ( `' F " ( _V 
\  {  .0.  }
) ) ) , 
RR* ,  <  )  <_  G 
<-> 
A. y  e.  ( H " ( `' F " ( _V 
\  {  .0.  }
) ) ) y  <_  G ) )
24 ffn 5583 . . . . 5  |-  ( H : A --> NN0  ->  H  Fn  A )
2514, 24syl 16 . . . 4  |-  ( ( F  e.  B  /\  G  e.  RR* )  ->  H  Fn  A )
26 cnvimass 5216 . . . . 5  |-  ( `' F " ( _V 
\  {  .0.  }
) )  C_  dom  F
27 eqid 2435 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
28 simpl 444 . . . . . . 7  |-  ( ( F  e.  B  /\  G  e.  RR* )  ->  F  e.  B )
292, 27, 3, 5, 28mplelf 16489 . . . . . 6  |-  ( ( F  e.  B  /\  G  e.  RR* )  ->  F : A --> ( Base `  R ) )
30 fdm 5587 . . . . . 6  |-  ( F : A --> ( Base `  R )  ->  dom  F  =  A )
3129, 30syl 16 . . . . 5  |-  ( ( F  e.  B  /\  G  e.  RR* )  ->  dom  F  =  A )
3226, 31syl5sseq 3388 . . . 4  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( `' F "
( _V  \  {  .0.  } ) )  C_  A )
33 breq1 4207 . . . . 5  |-  ( y  =  ( H `  x )  ->  (
y  <_  G  <->  ( H `  x )  <_  G
) )
3433ralima 5970 . . . 4  |-  ( ( H  Fn  A  /\  ( `' F " ( _V 
\  {  .0.  }
) )  C_  A
)  ->  ( A. y  e.  ( H " ( `' F "
( _V  \  {  .0.  } ) ) ) y  <_  G  <->  A. x  e.  ( `' F "
( _V  \  {  .0.  } ) ) ( H `  x )  <_  G ) )
3525, 32, 34syl2anc 643 . . 3  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( A. y  e.  ( H " ( `' F " ( _V 
\  {  .0.  }
) ) ) y  <_  G  <->  A. x  e.  ( `' F "
( _V  \  {  .0.  } ) ) ( H `  x )  <_  G ) )
36 ffn 5583 . . . . . . . 8  |-  ( F : A --> ( Base `  R )  ->  F  Fn  A )
3729, 36syl 16 . . . . . . 7  |-  ( ( F  e.  B  /\  G  e.  RR* )  ->  F  Fn  A )
38 elpreima 5842 . . . . . . 7  |-  ( F  Fn  A  ->  (
x  e.  ( `' F " ( _V 
\  {  .0.  }
) )  <->  ( x  e.  A  /\  ( F `  x )  e.  ( _V  \  {  .0.  } ) ) ) )
3937, 38syl 16 . . . . . 6  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( x  e.  ( `' F " ( _V 
\  {  .0.  }
) )  <->  ( x  e.  A  /\  ( F `  x )  e.  ( _V  \  {  .0.  } ) ) ) )
4039imbi1d 309 . . . . 5  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( ( x  e.  ( `' F "
( _V  \  {  .0.  } ) )  -> 
( H `  x
)  <_  G )  <->  ( ( x  e.  A  /\  ( F `  x
)  e.  ( _V 
\  {  .0.  }
) )  ->  ( H `  x )  <_  G ) ) )
41 impexp 434 . . . . . 6  |-  ( ( ( x  e.  A  /\  ( F `  x
)  e.  ( _V 
\  {  .0.  }
) )  ->  ( H `  x )  <_  G )  <->  ( x  e.  A  ->  ( ( F `  x )  e.  ( _V  \  {  .0.  } )  -> 
( H `  x
)  <_  G )
) )
42 con34b 284 . . . . . . . 8  |-  ( ( ( F `  x
)  e.  ( _V 
\  {  .0.  }
)  ->  ( H `  x )  <_  G
)  <->  ( -.  ( H `  x )  <_  G  ->  -.  ( F `  x )  e.  ( _V  \  {  .0.  } ) ) )
43 simplr 732 . . . . . . . . . . 11  |-  ( ( ( F  e.  B  /\  G  e.  RR* )  /\  x  e.  A
)  ->  G  e.  RR* )
4414ffvelrnda 5862 . . . . . . . . . . . 12  |-  ( ( ( F  e.  B  /\  G  e.  RR* )  /\  x  e.  A
)  ->  ( H `  x )  e.  NN0 )
4519, 44sseldi 3338 . . . . . . . . . . 11  |-  ( ( ( F  e.  B  /\  G  e.  RR* )  /\  x  e.  A
)  ->  ( H `  x )  e.  RR* )
46 xrltnle 9136 . . . . . . . . . . 11  |-  ( ( G  e.  RR*  /\  ( H `  x )  e.  RR* )  ->  ( G  <  ( H `  x )  <->  -.  ( H `  x )  <_  G ) )
4743, 45, 46syl2anc 643 . . . . . . . . . 10  |-  ( ( ( F  e.  B  /\  G  e.  RR* )  /\  x  e.  A
)  ->  ( G  <  ( H `  x
)  <->  -.  ( H `  x )  <_  G
) )
4847bicomd 193 . . . . . . . . 9  |-  ( ( ( F  e.  B  /\  G  e.  RR* )  /\  x  e.  A
)  ->  ( -.  ( H `  x )  <_  G  <->  G  <  ( H `  x ) ) )
49 ianor 475 . . . . . . . . . . 11  |-  ( -.  ( ( F `  x )  e.  _V  /\  ( F `  x
)  =/=  .0.  )  <->  ( -.  ( F `  x )  e.  _V  \/  -.  ( F `  x )  =/=  .0.  ) )
50 eldifsn 3919 . . . . . . . . . . 11  |-  ( ( F `  x )  e.  ( _V  \  {  .0.  } )  <->  ( ( F `  x )  e.  _V  /\  ( F `
 x )  =/= 
.0.  ) )
5149, 50xchnxbir 301 . . . . . . . . . 10  |-  ( -.  ( F `  x
)  e.  ( _V 
\  {  .0.  }
)  <->  ( -.  ( F `  x )  e.  _V  \/  -.  ( F `  x )  =/=  .0.  ) )
52 orcom 377 . . . . . . . . . . . 12  |-  ( ( -.  ( F `  x )  e.  _V  \/  -.  ( F `  x )  =/=  .0.  ) 
<->  ( -.  ( F `
 x )  =/= 
.0.  \/  -.  ( F `  x )  e.  _V ) )
53 fvex 5734 . . . . . . . . . . . . . 14  |-  ( F `
 x )  e. 
_V
5453notnoti 117 . . . . . . . . . . . . 13  |-  -.  -.  ( F `  x )  e.  _V
5554biorfi 397 . . . . . . . . . . . 12  |-  ( -.  ( F `  x
)  =/=  .0.  <->  ( -.  ( F `  x )  =/=  .0.  \/  -.  ( F `  x )  e.  _V ) )
56 nne 2602 . . . . . . . . . . . 12  |-  ( -.  ( F `  x
)  =/=  .0.  <->  ( F `  x )  =  .0.  )
5752, 55, 563bitr2i 265 . . . . . . . . . . 11  |-  ( ( -.  ( F `  x )  e.  _V  \/  -.  ( F `  x )  =/=  .0.  ) 
<->  ( F `  x
)  =  .0.  )
5857a1i 11 . . . . . . . . . 10  |-  ( ( ( F  e.  B  /\  G  e.  RR* )  /\  x  e.  A
)  ->  ( ( -.  ( F `  x
)  e.  _V  \/  -.  ( F `  x
)  =/=  .0.  )  <->  ( F `  x )  =  .0.  ) )
5951, 58syl5bb 249 . . . . . . . . 9  |-  ( ( ( F  e.  B  /\  G  e.  RR* )  /\  x  e.  A
)  ->  ( -.  ( F `  x )  e.  ( _V  \  {  .0.  } )  <->  ( F `  x )  =  .0.  ) )
6048, 59imbi12d 312 . . . . . . . 8  |-  ( ( ( F  e.  B  /\  G  e.  RR* )  /\  x  e.  A
)  ->  ( ( -.  ( H `  x
)  <_  G  ->  -.  ( F `  x
)  e.  ( _V 
\  {  .0.  }
) )  <->  ( G  <  ( H `  x
)  ->  ( F `  x )  =  .0.  ) ) )
6142, 60syl5bb 249 . . . . . . 7  |-  ( ( ( F  e.  B  /\  G  e.  RR* )  /\  x  e.  A
)  ->  ( (
( F `  x
)  e.  ( _V 
\  {  .0.  }
)  ->  ( H `  x )  <_  G
)  <->  ( G  < 
( H `  x
)  ->  ( F `  x )  =  .0.  ) ) )
6261pm5.74da 669 . . . . . 6  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( ( x  e.  A  ->  ( ( F `  x )  e.  ( _V  \  {  .0.  } )  ->  ( H `  x )  <_  G ) )  <->  ( x  e.  A  ->  ( G  <  ( H `  x )  ->  ( F `  x )  =  .0.  ) ) ) )
6341, 62syl5bb 249 . . . . 5  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( ( ( x  e.  A  /\  ( F `  x )  e.  ( _V  \  {  .0.  } ) )  -> 
( H `  x
)  <_  G )  <->  ( x  e.  A  -> 
( G  <  ( H `  x )  ->  ( F `  x
)  =  .0.  )
) ) )
6440, 63bitrd 245 . . . 4  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( ( x  e.  ( `' F "
( _V  \  {  .0.  } ) )  -> 
( H `  x
)  <_  G )  <->  ( x  e.  A  -> 
( G  <  ( H `  x )  ->  ( F `  x
)  =  .0.  )
) ) )
6564ralbidv2 2719 . . 3  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( A. x  e.  ( `' F "
( _V  \  {  .0.  } ) ) ( H `  x )  <_  G  <->  A. x  e.  A  ( G  <  ( H `  x
)  ->  ( F `  x )  =  .0.  ) ) )
6635, 65bitrd 245 . 2  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( A. y  e.  ( H " ( `' F " ( _V 
\  {  .0.  }
) ) ) y  <_  G  <->  A. x  e.  A  ( G  <  ( H `  x
)  ->  ( F `  x )  =  .0.  ) ) )
679, 23, 663bitrd 271 1  |-  ( ( F  e.  B  /\  G  e.  RR* )  -> 
( ( D `  F )  <_  G  <->  A. x  e.  A  ( G  <  ( H `
 x )  -> 
( F `  x
)  =  .0.  )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   {crab 2701   _Vcvv 2948    \ cdif 3309    C_ wss 3312   {csn 3806   class class class wbr 4204    e. cmpt 4258   `'ccnv 4869   dom cdm 4870   ran crn 4871   "cima 4873    Fn wfn 5441   -->wf 5442   ` cfv 5446  (class class class)co 6073    ^m cmap 7010   Fincfn 7101   supcsup 7437   RRcr 8981   RR*cxr 9111    < clt 9112    <_ cle 9113   NNcn 9992   NN0cn0 10213   Basecbs 13461   0gc0g 13715    gsumg cgsu 13716   mPoly cmpl 16400  ℂfldccnfld 16695   mDeg cmdg 19968
This theorem is referenced by:  mdeglt  19980  mdegaddle  19989  mdegvscale  19990  mdegle0  19992  mdegmullem  19993  deg1leb  20010
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7471  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-fz 11036  df-fzo 11128  df-seq 11316  df-hash 11611  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-starv 13536  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-0g 13719  df-gsum 13720  df-mnd 14682  df-submnd 14731  df-grp 14804  df-minusg 14805  df-cntz 15108  df-cmn 15406  df-abl 15407  df-mgp 15641  df-rng 15655  df-cring 15656  df-ur 15657  df-psr 16409  df-mpl 16411  df-cnfld 16696  df-mdeg 19970
  Copyright terms: Public domain W3C validator