MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegmullem Unicode version

Theorem mdegmullem 19870
Description: Lemma for mdegmulle2 19871. (Contributed by Stefan O'Rear, 26-Mar-2015.)
Hypotheses
Ref Expression
mdegaddle.y  |-  Y  =  ( I mPoly  R )
mdegaddle.d  |-  D  =  ( I mDeg  R )
mdegaddle.i  |-  ( ph  ->  I  e.  V )
mdegaddle.r  |-  ( ph  ->  R  e.  Ring )
mdegmulle2.b  |-  B  =  ( Base `  Y
)
mdegmulle2.t  |-  .x.  =  ( .r `  Y )
mdegmulle2.f  |-  ( ph  ->  F  e.  B )
mdegmulle2.g  |-  ( ph  ->  G  e.  B )
mdegmulle2.j1  |-  ( ph  ->  J  e.  NN0 )
mdegmulle2.k1  |-  ( ph  ->  K  e.  NN0 )
mdegmulle2.j2  |-  ( ph  ->  ( D `  F
)  <_  J )
mdegmulle2.k2  |-  ( ph  ->  ( D `  G
)  <_  K )
mdegmullem.a  |-  A  =  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }
mdegmullem.h  |-  H  =  ( b  e.  A  |->  (fld 
gsumg  b ) )
Assertion
Ref Expression
mdegmullem  |-  ( ph  ->  ( D `  ( F  .x.  G ) )  <_  ( J  +  K ) )
Distinct variable groups:    I, a,
b    R, b    V, b    A, b
Allowed substitution hints:    ph( a, b)    A( a)    B( a, b)    D( a, b)    R( a)    .x. ( a, b)    F( a, b)    G( a, b)    H( a, b)    J( a, b)    K( a, b)    V( a)    Y( a, b)

Proof of Theorem mdegmullem
Dummy variables  c 
d  x  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegaddle.y . . . . . . . 8  |-  Y  =  ( I mPoly  R )
2 mdegmulle2.b . . . . . . . 8  |-  B  =  ( Base `  Y
)
3 eqid 2389 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
4 mdegmulle2.t . . . . . . . 8  |-  .x.  =  ( .r `  Y )
5 mdegmullem.a . . . . . . . 8  |-  A  =  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }
6 mdegmulle2.f . . . . . . . 8  |-  ( ph  ->  F  e.  B )
7 mdegmulle2.g . . . . . . . 8  |-  ( ph  ->  G  e.  B )
81, 2, 3, 4, 5, 6, 7mplmul 16435 . . . . . . 7  |-  ( ph  ->  ( F  .x.  G
)  =  ( c  e.  A  |->  ( R 
gsumg  ( d  e.  {
e  e.  A  | 
e  o R  <_ 
c }  |->  ( ( F `  d ) ( .r `  R
) ( G `  ( c  o F  -  d ) ) ) ) ) ) )
98fveq1d 5672 . . . . . 6  |-  ( ph  ->  ( ( F  .x.  G ) `  x
)  =  ( ( c  e.  A  |->  ( R  gsumg  ( d  e.  {
e  e.  A  | 
e  o R  <_ 
c }  |->  ( ( F `  d ) ( .r `  R
) ( G `  ( c  o F  -  d ) ) ) ) ) ) `
 x ) )
109adantr 452 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  ( J  +  K )  <  ( H `  x
) ) )  -> 
( ( F  .x.  G ) `  x
)  =  ( ( c  e.  A  |->  ( R  gsumg  ( d  e.  {
e  e.  A  | 
e  o R  <_ 
c }  |->  ( ( F `  d ) ( .r `  R
) ( G `  ( c  o F  -  d ) ) ) ) ) ) `
 x ) )
11 breq2 4159 . . . . . . . . . 10  |-  ( c  =  x  ->  (
e  o R  <_ 
c  <->  e  o R  <_  x ) )
1211rabbidv 2893 . . . . . . . . 9  |-  ( c  =  x  ->  { e  e.  A  |  e  o R  <_  c }  =  { e  e.  A  |  e  o R  <_  x }
)
13 oveq1 6029 . . . . . . . . . . 11  |-  ( c  =  x  ->  (
c  o F  -  d )  =  ( x  o F  -  d ) )
1413fveq2d 5674 . . . . . . . . . 10  |-  ( c  =  x  ->  ( G `  ( c  o F  -  d
) )  =  ( G `  ( x  o F  -  d
) ) )
1514oveq2d 6038 . . . . . . . . 9  |-  ( c  =  x  ->  (
( F `  d
) ( .r `  R ) ( G `
 ( c  o F  -  d ) ) )  =  ( ( F `  d
) ( .r `  R ) ( G `
 ( x  o F  -  d ) ) ) )
1612, 15mpteq12dv 4230 . . . . . . . 8  |-  ( c  =  x  ->  (
d  e.  { e  e.  A  |  e  o R  <_  c }  |->  ( ( F `
 d ) ( .r `  R ) ( G `  (
c  o F  -  d ) ) ) )  =  ( d  e.  { e  e.  A  |  e  o R  <_  x }  |->  ( ( F `  d ) ( .r
`  R ) ( G `  ( x  o F  -  d
) ) ) ) )
1716oveq2d 6038 . . . . . . 7  |-  ( c  =  x  ->  ( R  gsumg  ( d  e.  {
e  e.  A  | 
e  o R  <_ 
c }  |->  ( ( F `  d ) ( .r `  R
) ( G `  ( c  o F  -  d ) ) ) ) )  =  ( R  gsumg  ( d  e.  {
e  e.  A  | 
e  o R  <_  x }  |->  ( ( F `  d ) ( .r `  R
) ( G `  ( x  o F  -  d ) ) ) ) ) )
18 eqid 2389 . . . . . . 7  |-  ( c  e.  A  |->  ( R 
gsumg  ( d  e.  {
e  e.  A  | 
e  o R  <_ 
c }  |->  ( ( F `  d ) ( .r `  R
) ( G `  ( c  o F  -  d ) ) ) ) ) )  =  ( c  e.  A  |->  ( R  gsumg  ( d  e.  { e  e.  A  |  e  o R  <_  c }  |->  ( ( F `  d ) ( .r
`  R ) ( G `  ( c  o F  -  d
) ) ) ) ) )
19 ovex 6047 . . . . . . 7  |-  ( R 
gsumg  ( d  e.  {
e  e.  A  | 
e  o R  <_  x }  |->  ( ( F `  d ) ( .r `  R
) ( G `  ( x  o F  -  d ) ) ) ) )  e. 
_V
2017, 18, 19fvmpt 5747 . . . . . 6  |-  ( x  e.  A  ->  (
( c  e.  A  |->  ( R  gsumg  ( d  e.  {
e  e.  A  | 
e  o R  <_ 
c }  |->  ( ( F `  d ) ( .r `  R
) ( G `  ( c  o F  -  d ) ) ) ) ) ) `
 x )  =  ( R  gsumg  ( d  e.  {
e  e.  A  | 
e  o R  <_  x }  |->  ( ( F `  d ) ( .r `  R
) ( G `  ( x  o F  -  d ) ) ) ) ) )
2120ad2antrl 709 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  ( J  +  K )  <  ( H `  x
) ) )  -> 
( ( c  e.  A  |->  ( R  gsumg  ( d  e.  { e  e.  A  |  e  o R  <_  c }  |->  ( ( F `  d ) ( .r
`  R ) ( G `  ( c  o F  -  d
) ) ) ) ) ) `  x
)  =  ( R 
gsumg  ( d  e.  {
e  e.  A  | 
e  o R  <_  x }  |->  ( ( F `  d ) ( .r `  R
) ( G `  ( x  o F  -  d ) ) ) ) ) )
22 mdegaddle.d . . . . . . . . . . . . 13  |-  D  =  ( I mDeg  R )
23 eqid 2389 . . . . . . . . . . . . 13  |-  ( 0g
`  R )  =  ( 0g `  R
)
24 mdegmullem.h . . . . . . . . . . . . 13  |-  H  =  ( b  e.  A  |->  (fld 
gsumg  b ) )
256ad2antrr 707 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  J  <  ( H `  d
) ) )  ->  F  e.  B )
26 elrabi 3035 . . . . . . . . . . . . . . 15  |-  ( d  e.  { e  e.  A  |  e  o R  <_  x }  ->  d  e.  A )
2726adantl 453 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  d  e.  A )
2827adantrr 698 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  J  <  ( H `  d
) ) )  -> 
d  e.  A )
2922, 1, 2mdegxrcl 19859 . . . . . . . . . . . . . . . . . 18  |-  ( F  e.  B  ->  ( D `  F )  e.  RR* )
306, 29syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( D `  F
)  e.  RR* )
3130ad2antrr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( D `  F )  e.  RR* )
32 nn0ssre 10159 . . . . . . . . . . . . . . . . . . 19  |-  NN0  C_  RR
33 ressxr 9064 . . . . . . . . . . . . . . . . . . 19  |-  RR  C_  RR*
3432, 33sstri 3302 . . . . . . . . . . . . . . . . . 18  |-  NN0  C_  RR*
35 mdegmulle2.j1 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  J  e.  NN0 )
3634, 35sseldi 3291 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  J  e.  RR* )
3736ad2antrr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  J  e.  RR* )
38 mdegaddle.i . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  I  e.  V )
395, 24tdeglem1 19850 . . . . . . . . . . . . . . . . . . . 20  |-  ( I  e.  V  ->  H : A --> NN0 )
4038, 39syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  H : A --> NN0 )
4140ad2antrr 707 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  H : A --> NN0 )
4241, 27ffvelrnd 5812 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( H `  d )  e.  NN0 )
4334, 42sseldi 3291 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( H `  d )  e.  RR* )
4431, 37, 433jca 1134 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
( D `  F
)  e.  RR*  /\  J  e.  RR*  /\  ( H `
 d )  e. 
RR* ) )
4544adantrr 698 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  J  <  ( H `  d
) ) )  -> 
( ( D `  F )  e.  RR*  /\  J  e.  RR*  /\  ( H `  d )  e.  RR* ) )
46 mdegmulle2.j2 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( D `  F
)  <_  J )
4746ad2antrr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( D `  F )  <_  J )
4847anim1i 552 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  /\  J  <  ( H `  d
) )  ->  (
( D `  F
)  <_  J  /\  J  <  ( H `  d ) ) )
4948anasss 629 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  J  <  ( H `  d
) ) )  -> 
( ( D `  F )  <_  J  /\  J  <  ( H `
 d ) ) )
50 xrlelttr 10680 . . . . . . . . . . . . . 14  |-  ( ( ( D `  F
)  e.  RR*  /\  J  e.  RR*  /\  ( H `
 d )  e. 
RR* )  ->  (
( ( D `  F )  <_  J  /\  J  <  ( H `
 d ) )  ->  ( D `  F )  <  ( H `  d )
) )
5145, 49, 50sylc 58 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  J  <  ( H `  d
) ) )  -> 
( D `  F
)  <  ( H `  d ) )
5222, 1, 2, 23, 5, 24, 25, 28, 51mdeglt 19857 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  J  <  ( H `  d
) ) )  -> 
( F `  d
)  =  ( 0g
`  R ) )
5352oveq1d 6037 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  J  <  ( H `  d
) ) )  -> 
( ( F `  d ) ( .r
`  R ) ( G `  ( x  o F  -  d
) ) )  =  ( ( 0g `  R ) ( .r
`  R ) ( G `  ( x  o F  -  d
) ) ) )
54 mdegaddle.r . . . . . . . . . . . . . 14  |-  ( ph  ->  R  e.  Ring )
5554ad2antrr 707 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  R  e.  Ring )
56 eqid 2389 . . . . . . . . . . . . . . . 16  |-  ( Base `  R )  =  (
Base `  R )
571, 56, 2, 5, 7mplelf 16426 . . . . . . . . . . . . . . 15  |-  ( ph  ->  G : A --> ( Base `  R ) )
5857ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  G : A --> ( Base `  R
) )
59 ssrab2 3373 . . . . . . . . . . . . . . 15  |-  { e  e.  A  |  e  o R  <_  x }  C_  A
6038ad2antrr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  I  e.  V )
61 simplrl 737 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  x  e.  A )
62 simpr 448 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  d  e.  { e  e.  A  |  e  o R  <_  x } )
63 eqid 2389 . . . . . . . . . . . . . . . . 17  |-  { e  e.  A  |  e  o R  <_  x }  =  { e  e.  A  |  e  o R  <_  x }
645, 63psrbagconcl 16367 . . . . . . . . . . . . . . . 16  |-  ( ( I  e.  V  /\  x  e.  A  /\  d  e.  { e  e.  A  |  e  o R  <_  x }
)  ->  ( x  o F  -  d
)  e.  { e  e.  A  |  e  o R  <_  x } )
6560, 61, 62, 64syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
x  o F  -  d )  e.  {
e  e.  A  | 
e  o R  <_  x } )
6659, 65sseldi 3291 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
x  o F  -  d )  e.  A
)
6758, 66ffvelrnd 5812 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( G `  ( x  o F  -  d
) )  e.  (
Base `  R )
)
6856, 3, 23rnglz 15629 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  ( G `  ( x  o F  -  d
) )  e.  (
Base `  R )
)  ->  ( ( 0g `  R ) ( .r `  R ) ( G `  (
x  o F  -  d ) ) )  =  ( 0g `  R ) )
6955, 67, 68syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
( 0g `  R
) ( .r `  R ) ( G `
 ( x  o F  -  d ) ) )  =  ( 0g `  R ) )
7069adantrr 698 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  J  <  ( H `  d
) ) )  -> 
( ( 0g `  R ) ( .r
`  R ) ( G `  ( x  o F  -  d
) ) )  =  ( 0g `  R
) )
7153, 70eqtrd 2421 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  J  <  ( H `  d
) ) )  -> 
( ( F `  d ) ( .r
`  R ) ( G `  ( x  o F  -  d
) ) )  =  ( 0g `  R
) )
7271anassrs 630 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  /\  J  <  ( H `  d
) )  ->  (
( F `  d
) ( .r `  R ) ( G `
 ( x  o F  -  d ) ) )  =  ( 0g `  R ) )
737ad2antrr 707 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  K  <  ( H `  (
x  o F  -  d ) ) ) )  ->  G  e.  B )
7466adantrr 698 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  K  <  ( H `  (
x  o F  -  d ) ) ) )  ->  ( x  o F  -  d
)  e.  A )
7522, 1, 2mdegxrcl 19859 . . . . . . . . . . . . . . . . . 18  |-  ( G  e.  B  ->  ( D `  G )  e.  RR* )
767, 75syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( D `  G
)  e.  RR* )
7776ad2antrr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( D `  G )  e.  RR* )
78 mdegmulle2.k1 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  K  e.  NN0 )
7934, 78sseldi 3291 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  K  e.  RR* )
8079ad2antrr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  K  e.  RR* )
8141, 66ffvelrnd 5812 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( H `  ( x  o F  -  d
) )  e.  NN0 )
8234, 81sseldi 3291 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( H `  ( x  o F  -  d
) )  e.  RR* )
8377, 80, 823jca 1134 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
( D `  G
)  e.  RR*  /\  K  e.  RR*  /\  ( H `
 ( x  o F  -  d ) )  e.  RR* )
)
8483adantrr 698 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  K  <  ( H `  (
x  o F  -  d ) ) ) )  ->  ( ( D `  G )  e.  RR*  /\  K  e. 
RR*  /\  ( H `  ( x  o F  -  d ) )  e.  RR* ) )
85 mdegmulle2.k2 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( D `  G
)  <_  K )
8685ad2antrr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( D `  G )  <_  K )
8786anim1i 552 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  /\  K  <  ( H `  (
x  o F  -  d ) ) )  ->  ( ( D `
 G )  <_  K  /\  K  <  ( H `  ( x  o F  -  d
) ) ) )
8887anasss 629 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  K  <  ( H `  (
x  o F  -  d ) ) ) )  ->  ( ( D `  G )  <_  K  /\  K  < 
( H `  (
x  o F  -  d ) ) ) )
89 xrlelttr 10680 . . . . . . . . . . . . . 14  |-  ( ( ( D `  G
)  e.  RR*  /\  K  e.  RR*  /\  ( H `
 ( x  o F  -  d ) )  e.  RR* )  ->  ( ( ( D `
 G )  <_  K  /\  K  <  ( H `  ( x  o F  -  d
) ) )  -> 
( D `  G
)  <  ( H `  ( x  o F  -  d ) ) ) )
9084, 88, 89sylc 58 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  K  <  ( H `  (
x  o F  -  d ) ) ) )  ->  ( D `  G )  <  ( H `  ( x  o F  -  d
) ) )
9122, 1, 2, 23, 5, 24, 73, 74, 90mdeglt 19857 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  K  <  ( H `  (
x  o F  -  d ) ) ) )  ->  ( G `  ( x  o F  -  d ) )  =  ( 0g `  R ) )
9291oveq2d 6038 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  K  <  ( H `  (
x  o F  -  d ) ) ) )  ->  ( ( F `  d )
( .r `  R
) ( G `  ( x  o F  -  d ) ) )  =  ( ( F `  d ) ( .r `  R
) ( 0g `  R ) ) )
931, 56, 2, 5, 6mplelf 16426 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F : A --> ( Base `  R ) )
9493ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  F : A --> ( Base `  R
) )
9594, 27ffvelrnd 5812 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( F `  d )  e.  ( Base `  R
) )
9656, 3, 23rngrz 15630 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  ( F `  d )  e.  ( Base `  R
) )  ->  (
( F `  d
) ( .r `  R ) ( 0g
`  R ) )  =  ( 0g `  R ) )
9755, 95, 96syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
( F `  d
) ( .r `  R ) ( 0g
`  R ) )  =  ( 0g `  R ) )
9897adantrr 698 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  K  <  ( H `  (
x  o F  -  d ) ) ) )  ->  ( ( F `  d )
( .r `  R
) ( 0g `  R ) )  =  ( 0g `  R
) )
9992, 98eqtrd 2421 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  ( d  e. 
{ e  e.  A  |  e  o R  <_  x }  /\  K  <  ( H `  (
x  o F  -  d ) ) ) )  ->  ( ( F `  d )
( .r `  R
) ( G `  ( x  o F  -  d ) ) )  =  ( 0g
`  R ) )
10099anassrs 630 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  /\  K  <  ( H `  (
x  o F  -  d ) ) )  ->  ( ( F `
 d ) ( .r `  R ) ( G `  (
x  o F  -  d ) ) )  =  ( 0g `  R ) )
101 simplrr 738 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( J  +  K )  <  ( H `  x
) )
10242nn0red 10209 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( H `  d )  e.  RR )
10381nn0red 10209 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( H `  ( x  o F  -  d
) )  e.  RR )
10435ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  J  e.  NN0 )
105104nn0red 10209 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  J  e.  RR )
10678ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  K  e.  NN0 )
107106nn0red 10209 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  K  e.  RR )
108 le2add 9444 . . . . . . . . . . . . 13  |-  ( ( ( ( H `  d )  e.  RR  /\  ( H `  (
x  o F  -  d ) )  e.  RR )  /\  ( J  e.  RR  /\  K  e.  RR ) )  -> 
( ( ( H `
 d )  <_  J  /\  ( H `  ( x  o F  -  d ) )  <_  K )  -> 
( ( H `  d )  +  ( H `  ( x  o F  -  d
) ) )  <_ 
( J  +  K
) ) )
109102, 103, 105, 107, 108syl22anc 1185 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
( ( H `  d )  <_  J  /\  ( H `  (
x  o F  -  d ) )  <_  K )  ->  (
( H `  d
)  +  ( H `
 ( x  o F  -  d ) ) )  <_  ( J  +  K )
) )
1105, 24tdeglem3 19851 . . . . . . . . . . . . . . 15  |-  ( ( I  e.  V  /\  d  e.  A  /\  ( x  o F  -  d )  e.  A )  ->  ( H `  ( d  o F  +  (
x  o F  -  d ) ) )  =  ( ( H `
 d )  +  ( H `  (
x  o F  -  d ) ) ) )
11160, 27, 66, 110syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( H `  ( d  o F  +  (
x  o F  -  d ) ) )  =  ( ( H `
 d )  +  ( H `  (
x  o F  -  d ) ) ) )
1125psrbagf 16361 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( I  e.  V  /\  d  e.  A )  ->  d : I --> NN0 )
1131123adant3 977 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A )  ->  d : I --> NN0 )
114113ffvelrnda 5811 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A
)  /\  b  e.  I )  ->  (
d `  b )  e.  NN0 )
115114nn0cnd 10210 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A
)  /\  b  e.  I )  ->  (
d `  b )  e.  CC )
1165psrbagf 16361 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( I  e.  V  /\  x  e.  A )  ->  x : I --> NN0 )
1171163adant2 976 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A )  ->  x : I --> NN0 )
118117ffvelrnda 5811 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A
)  /\  b  e.  I )  ->  (
x `  b )  e.  NN0 )
119118nn0cnd 10210 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A
)  /\  b  e.  I )  ->  (
x `  b )  e.  CC )
120115, 119pncan3d 9348 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A
)  /\  b  e.  I )  ->  (
( d `  b
)  +  ( ( x `  b )  -  ( d `  b ) ) )  =  ( x `  b ) )
121120mpteq2dva 4238 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A )  ->  ( b  e.  I  |->  ( ( d `  b )  +  ( ( x `  b
)  -  ( d `
 b ) ) ) )  =  ( b  e.  I  |->  ( x `  b ) ) )
122 simp1 957 . . . . . . . . . . . . . . . . . 18  |-  ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A )  ->  I  e.  V )
123 fvex 5684 . . . . . . . . . . . . . . . . . . 19  |-  ( d `
 b )  e. 
_V
124123a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A
)  /\  b  e.  I )  ->  (
d `  b )  e.  _V )
125 ovex 6047 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x `  b )  -  ( d `  b ) )  e. 
_V
126125a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A
)  /\  b  e.  I )  ->  (
( x `  b
)  -  ( d `
 b ) )  e.  _V )
127113feqmptd 5720 . . . . . . . . . . . . . . . . . 18  |-  ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A )  ->  d  =  ( b  e.  I  |->  ( d `
 b ) ) )
128 fvex 5684 . . . . . . . . . . . . . . . . . . . 20  |-  ( x `
 b )  e. 
_V
129128a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A
)  /\  b  e.  I )  ->  (
x `  b )  e.  _V )
130117feqmptd 5720 . . . . . . . . . . . . . . . . . . 19  |-  ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A )  ->  x  =  ( b  e.  I  |->  ( x `
 b ) ) )
131122, 129, 124, 130, 127offval2 6263 . . . . . . . . . . . . . . . . . 18  |-  ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A )  ->  ( x  o F  -  d )  =  ( b  e.  I  |->  ( ( x `  b )  -  (
d `  b )
) ) )
132122, 124, 126, 127, 131offval2 6263 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A )  ->  ( d  o F  +  ( x  o F  -  d ) )  =  ( b  e.  I  |->  ( ( d `  b )  +  ( ( x `
 b )  -  ( d `  b
) ) ) ) )
133121, 132, 1303eqtr4d 2431 . . . . . . . . . . . . . . . 16  |-  ( ( I  e.  V  /\  d  e.  A  /\  x  e.  A )  ->  ( d  o F  +  ( x  o F  -  d ) )  =  x )
13460, 27, 61, 133syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
d  o F  +  ( x  o F  -  d ) )  =  x )
135134fveq2d 5674 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( H `  ( d  o F  +  (
x  o F  -  d ) ) )  =  ( H `  x ) )
136111, 135eqtr3d 2423 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
( H `  d
)  +  ( H `
 ( x  o F  -  d ) ) )  =  ( H `  x ) )
137136breq1d 4165 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
( ( H `  d )  +  ( H `  ( x  o F  -  d
) ) )  <_ 
( J  +  K
)  <->  ( H `  x )  <_  ( J  +  K )
) )
138109, 137sylibd 206 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
( ( H `  d )  <_  J  /\  ( H `  (
x  o F  -  d ) )  <_  K )  ->  ( H `  x )  <_  ( J  +  K
) ) )
139102, 105lenltd 9153 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
( H `  d
)  <_  J  <->  -.  J  <  ( H `  d
) ) )
140103, 107lenltd 9153 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
( H `  (
x  o F  -  d ) )  <_  K 
<->  -.  K  <  ( H `  ( x  o F  -  d
) ) ) )
141139, 140anbi12d 692 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
( ( H `  d )  <_  J  /\  ( H `  (
x  o F  -  d ) )  <_  K )  <->  ( -.  J  <  ( H `  d )  /\  -.  K  <  ( H `  ( x  o F  -  d ) ) ) ) )
142 ioran 477 . . . . . . . . . . . 12  |-  ( -.  ( J  <  ( H `  d )  \/  K  <  ( H `
 ( x  o F  -  d ) ) )  <->  ( -.  J  <  ( H `  d )  /\  -.  K  <  ( H `  ( x  o F  -  d ) ) ) )
143141, 142syl6bbr 255 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
( ( H `  d )  <_  J  /\  ( H `  (
x  o F  -  d ) )  <_  K )  <->  -.  ( J  <  ( H `  d )  \/  K  <  ( H `  (
x  o F  -  d ) ) ) ) )
14441, 61ffvelrnd 5812 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( H `  x )  e.  NN0 )
145144nn0red 10209 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( H `  x )  e.  RR )
14635, 78nn0addcld 10212 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( J  +  K
)  e.  NN0 )
147146ad2antrr 707 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( J  +  K )  e.  NN0 )
148147nn0red 10209 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( J  +  K )  e.  RR )
149145, 148lenltd 9153 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
( H `  x
)  <_  ( J  +  K )  <->  -.  ( J  +  K )  <  ( H `  x
) ) )
150138, 143, 1493imtr3d 259 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( -.  ( J  <  ( H `  d )  \/  K  <  ( H `
 ( x  o F  -  d ) ) )  ->  -.  ( J  +  K
)  <  ( H `  x ) ) )
151101, 150mt4d 132 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  ( J  <  ( H `  d )  \/  K  <  ( H `  (
x  o F  -  d ) ) ) )
15272, 100, 151mpjaodan 762 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  A  /\  ( J  +  K
)  <  ( H `  x ) ) )  /\  d  e.  {
e  e.  A  | 
e  o R  <_  x } )  ->  (
( F `  d
) ( .r `  R ) ( G `
 ( x  o F  -  d ) ) )  =  ( 0g `  R ) )
153152mpteq2dva 4238 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  A  /\  ( J  +  K )  <  ( H `  x
) ) )  -> 
( d  e.  {
e  e.  A  | 
e  o R  <_  x }  |->  ( ( F `  d ) ( .r `  R
) ( G `  ( x  o F  -  d ) ) ) )  =  ( d  e.  { e  e.  A  |  e  o R  <_  x }  |->  ( 0g `  R ) ) )
154153oveq2d 6038 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  /\  ( J  +  K )  <  ( H `  x
) ) )  -> 
( R  gsumg  ( d  e.  {
e  e.  A  | 
e  o R  <_  x }  |->  ( ( F `  d ) ( .r `  R
) ( G `  ( x  o F  -  d ) ) ) ) )  =  ( R  gsumg  ( d  e.  {
e  e.  A  | 
e  o R  <_  x }  |->  ( 0g
`  R ) ) ) )
155 rngmnd 15602 . . . . . . . . 9  |-  ( R  e.  Ring  ->  R  e. 
Mnd )
15654, 155syl 16 . . . . . . . 8  |-  ( ph  ->  R  e.  Mnd )
157156adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  A  /\  ( J  +  K )  <  ( H `  x
) ) )  ->  R  e.  Mnd )
158 ovex 6047 . . . . . . . . . 10  |-  ( NN0 
^m  I )  e. 
_V
159158rabex 4297 . . . . . . . . 9  |-  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  e.  _V
1605, 159eqeltri 2459 . . . . . . . 8  |-  A  e. 
_V
161160rabex 4297 . . . . . . 7  |-  { e  e.  A  |  e  o R  <_  x }  e.  _V
16223gsumz 14710 . . . . . . 7  |-  ( ( R  e.  Mnd  /\  { e  e.  A  | 
e  o R  <_  x }  e.  _V )  ->  ( R  gsumg  ( d  e.  { e  e.  A  |  e  o R  <_  x }  |->  ( 0g `  R
) ) )  =  ( 0g `  R
) )
163157, 161, 162sylancl 644 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  /\  ( J  +  K )  <  ( H `  x
) ) )  -> 
( R  gsumg  ( d  e.  {
e  e.  A  | 
e  o R  <_  x }  |->  ( 0g
`  R ) ) )  =  ( 0g
`  R ) )
164154, 163eqtrd 2421 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  ( J  +  K )  <  ( H `  x
) ) )  -> 
( R  gsumg  ( d  e.  {
e  e.  A  | 
e  o R  <_  x }  |->  ( ( F `  d ) ( .r `  R
) ( G `  ( x  o F  -  d ) ) ) ) )  =  ( 0g `  R
) )
16510, 21, 1643eqtrd 2425 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  ( J  +  K )  <  ( H `  x
) ) )  -> 
( ( F  .x.  G ) `  x
)  =  ( 0g
`  R ) )
166165expr 599 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  (
( J  +  K
)  <  ( H `  x )  ->  (
( F  .x.  G
) `  x )  =  ( 0g `  R ) ) )
167166ralrimiva 2734 . 2  |-  ( ph  ->  A. x  e.  A  ( ( J  +  K )  <  ( H `  x )  ->  ( ( F  .x.  G ) `  x
)  =  ( 0g
`  R ) ) )
1681mplrng 16444 . . . . 5  |-  ( ( I  e.  V  /\  R  e.  Ring )  ->  Y  e.  Ring )
16938, 54, 168syl2anc 643 . . . 4  |-  ( ph  ->  Y  e.  Ring )
1702, 4rngcl 15606 . . . 4  |-  ( ( Y  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( F  .x.  G )  e.  B )
171169, 6, 7, 170syl3anc 1184 . . 3  |-  ( ph  ->  ( F  .x.  G
)  e.  B )
17234, 146sseldi 3291 . . 3  |-  ( ph  ->  ( J  +  K
)  e.  RR* )
17322, 1, 2, 23, 5, 24mdegleb 19856 . . 3  |-  ( ( ( F  .x.  G
)  e.  B  /\  ( J  +  K
)  e.  RR* )  ->  ( ( D `  ( F  .x.  G ) )  <_  ( J  +  K )  <->  A. x  e.  A  ( ( J  +  K )  <  ( H `  x
)  ->  ( ( F  .x.  G ) `  x )  =  ( 0g `  R ) ) ) )
174171, 172, 173syl2anc 643 . 2  |-  ( ph  ->  ( ( D `  ( F  .x.  G ) )  <_  ( J  +  K )  <->  A. x  e.  A  ( ( J  +  K )  <  ( H `  x
)  ->  ( ( F  .x.  G ) `  x )  =  ( 0g `  R ) ) ) )
175167, 174mpbird 224 1  |-  ( ph  ->  ( D `  ( F  .x.  G ) )  <_  ( J  +  K ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2651   {crab 2655   _Vcvv 2901   class class class wbr 4155    e. cmpt 4209   `'ccnv 4819   "cima 4823   -->wf 5392   ` cfv 5396  (class class class)co 6022    o Fcof 6244    o Rcofr 6245    ^m cmap 6956   Fincfn 7047   RRcr 8924    + caddc 8928   RR*cxr 9054    < clt 9055    <_ cle 9056    - cmin 9225   NNcn 9934   NN0cn0 10155   Basecbs 13398   .rcmulr 13459   0gc0g 13652    gsumg cgsu 13653   Mndcmnd 14613   Ringcrg 15589   mPoly cmpl 16337  ℂfldccnfld 16628   mDeg cmdg 19845
This theorem is referenced by:  mdegmulle2  19871
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-inf2 7531  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002  ax-pre-sup 9003  ax-addf 9004  ax-mulf 9005
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-iin 4040  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-se 4485  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-isom 5405  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-of 6246  df-ofr 6247  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-2o 6663  df-oadd 6666  df-er 6843  df-map 6958  df-pm 6959  df-ixp 7002  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-sup 7383  df-oi 7414  df-card 7761  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-nn 9935  df-2 9992  df-3 9993  df-4 9994  df-5 9995  df-6 9996  df-7 9997  df-8 9998  df-9 9999  df-10 10000  df-n0 10156  df-z 10217  df-dec 10317  df-uz 10423  df-fz 10978  df-fzo 11068  df-seq 11253  df-hash 11548  df-struct 13400  df-ndx 13401  df-slot 13402  df-base 13403  df-sets 13404  df-ress 13405  df-plusg 13471  df-mulr 13472  df-starv 13473  df-sca 13474  df-vsca 13475  df-tset 13477  df-ple 13478  df-ds 13480  df-unif 13481  df-0g 13656  df-gsum 13657  df-mre 13740  df-mrc 13741  df-acs 13743  df-mnd 14619  df-mhm 14667  df-submnd 14668  df-grp 14741  df-minusg 14742  df-mulg 14744  df-subg 14870  df-ghm 14933  df-cntz 15045  df-cmn 15343  df-abl 15344  df-mgp 15578  df-rng 15592  df-cring 15593  df-ur 15594  df-subrg 15795  df-psr 16346  df-mpl 16348  df-cnfld 16629  df-mdeg 19847
  Copyright terms: Public domain W3C validator