HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdsymlem3 Structured version   Unicode version

Theorem mdsymlem3 23900
Description: Lemma for mdsymi 23906. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdsymlem1.1  |-  A  e. 
CH
mdsymlem1.2  |-  B  e. 
CH
mdsymlem1.3  |-  C  =  ( A  vH  p
)
Assertion
Ref Expression
mdsymlem3  |-  ( ( ( ( p  e. HAtoms  /\  -.  ( B  i^i  C )  C_  A )  /\  p  C_  ( A  vH  B ) )  /\  A  =/=  0H )  ->  E. r  e. HAtoms  E. q  e. HAtoms  ( p  C_  (
q  vH  r )  /\  ( q  C_  A  /\  r  C_  B ) ) )
Distinct variable groups:    r, q, C    q, p, r, A    B, p, q, r
Allowed substitution hint:    C( p)

Proof of Theorem mdsymlem3
StepHypRef Expression
1 atelch 23839 . . . . . 6  |-  ( p  e. HAtoms  ->  p  e.  CH )
2 mdsymlem1.2 . . . . . . 7  |-  B  e. 
CH
3 mdsymlem1.3 . . . . . . . 8  |-  C  =  ( A  vH  p
)
4 mdsymlem1.1 . . . . . . . . 9  |-  A  e. 
CH
5 chjcl 22851 . . . . . . . . 9  |-  ( ( A  e.  CH  /\  p  e.  CH )  ->  ( A  vH  p
)  e.  CH )
64, 5mpan 652 . . . . . . . 8  |-  ( p  e.  CH  ->  ( A  vH  p )  e. 
CH )
73, 6syl5eqel 2519 . . . . . . 7  |-  ( p  e.  CH  ->  C  e.  CH )
8 chincl 22993 . . . . . . 7  |-  ( ( B  e.  CH  /\  C  e.  CH )  ->  ( B  i^i  C
)  e.  CH )
92, 7, 8sylancr 645 . . . . . 6  |-  ( p  e.  CH  ->  ( B  i^i  C )  e. 
CH )
101, 9syl 16 . . . . 5  |-  ( p  e. HAtoms  ->  ( B  i^i  C )  e.  CH )
11 chrelat2 23865 . . . . 5  |-  ( ( ( B  i^i  C
)  e.  CH  /\  A  e.  CH )  ->  ( -.  ( B  i^i  C )  C_  A 
<->  E. r  e. HAtoms  (
r  C_  ( B  i^i  C )  /\  -.  r  C_  A ) ) )
1210, 4, 11sylancl 644 . . . 4  |-  ( p  e. HAtoms  ->  ( -.  ( B  i^i  C )  C_  A 
<->  E. r  e. HAtoms  (
r  C_  ( B  i^i  C )  /\  -.  r  C_  A ) ) )
1312biimpa 471 . . 3  |-  ( ( p  e. HAtoms  /\  -.  ( B  i^i  C )  C_  A )  ->  E. r  e. HAtoms  ( r  C_  ( B  i^i  C )  /\  -.  r  C_  A ) )
1413ad2antrr 707 . 2  |-  ( ( ( ( p  e. HAtoms  /\  -.  ( B  i^i  C )  C_  A )  /\  p  C_  ( A  vH  B ) )  /\  A  =/=  0H )  ->  E. r  e. HAtoms  (
r  C_  ( B  i^i  C )  /\  -.  r  C_  A ) )
15 ssin 3555 . . . . . . . . . . . 12  |-  ( ( r  C_  B  /\  r  C_  C )  <->  r  C_  ( B  i^i  C ) )
163sseq2i 3365 . . . . . . . . . . . . . 14  |-  ( r 
C_  C  <->  r  C_  ( A  vH  p
) )
1716biimpi 187 . . . . . . . . . . . . 13  |-  ( r 
C_  C  ->  r  C_  ( A  vH  p
) )
1817adantl 453 . . . . . . . . . . . 12  |-  ( ( r  C_  B  /\  r  C_  C )  -> 
r  C_  ( A  vH  p ) )
1915, 18sylbir 205 . . . . . . . . . . 11  |-  ( r 
C_  ( B  i^i  C )  ->  r  C_  ( A  vH  p
) )
204atcvat4i 23892 . . . . . . . . . . . . . . 15  |-  ( ( r  e. HAtoms  /\  p  e. HAtoms )  ->  ( ( A  =/=  0H  /\  r  C_  ( A  vH  p
) )  ->  E. q  e. HAtoms  ( q  C_  A  /\  r  C_  ( p  vH  q ) ) ) )
2120exp4b 591 . . . . . . . . . . . . . 14  |-  ( r  e. HAtoms  ->  ( p  e. HAtoms  ->  ( A  =/=  0H  ->  ( r  C_  ( A  vH  p )  ->  E. q  e. HAtoms  ( q 
C_  A  /\  r  C_  ( p  vH  q
) ) ) ) ) )
2221com34 79 . . . . . . . . . . . . 13  |-  ( r  e. HAtoms  ->  ( p  e. HAtoms  ->  ( r  C_  ( A  vH  p )  -> 
( A  =/=  0H  ->  E. q  e. HAtoms  (
q  C_  A  /\  r  C_  ( p  vH  q ) ) ) ) ) )
2322com23 74 . . . . . . . . . . . 12  |-  ( r  e. HAtoms  ->  ( r  C_  ( A  vH  p
)  ->  ( p  e. HAtoms  ->  ( A  =/= 
0H  ->  E. q  e. HAtoms  (
q  C_  A  /\  r  C_  ( p  vH  q ) ) ) ) ) )
2423imp4b 574 . . . . . . . . . . 11  |-  ( ( r  e. HAtoms  /\  r  C_  ( A  vH  p
) )  ->  (
( p  e. HAtoms  /\  A  =/=  0H )  ->  E. q  e. HAtoms  ( q  C_  A  /\  r  C_  ( p  vH  q ) ) ) )
2519, 24sylan2 461 . . . . . . . . . 10  |-  ( ( r  e. HAtoms  /\  r  C_  ( B  i^i  C
) )  ->  (
( p  e. HAtoms  /\  A  =/=  0H )  ->  E. q  e. HAtoms  ( q  C_  A  /\  r  C_  ( p  vH  q ) ) ) )
2625adantrr 698 . . . . . . . . 9  |-  ( ( r  e. HAtoms  /\  (
r  C_  ( B  i^i  C )  /\  -.  r  C_  A ) )  ->  ( ( p  e. HAtoms  /\  A  =/=  0H )  ->  E. q  e. HAtoms  (
q  C_  A  /\  r  C_  ( p  vH  q ) ) ) )
2726com12 29 . . . . . . . 8  |-  ( ( p  e. HAtoms  /\  A  =/= 
0H )  ->  (
( r  e. HAtoms  /\  (
r  C_  ( B  i^i  C )  /\  -.  r  C_  A ) )  ->  E. q  e. HAtoms  (
q  C_  A  /\  r  C_  ( p  vH  q ) ) ) )
2827adantlr 696 . . . . . . 7  |-  ( ( ( p  e. HAtoms  /\  -.  ( B  i^i  C ) 
C_  A )  /\  A  =/=  0H )  -> 
( ( r  e. HAtoms  /\  ( r  C_  ( B  i^i  C )  /\  -.  r  C_  A ) )  ->  E. q  e. HAtoms  ( q  C_  A  /\  r  C_  ( p  vH  q ) ) ) )
2928adantlr 696 . . . . . 6  |-  ( ( ( ( p  e. HAtoms  /\  -.  ( B  i^i  C )  C_  A )  /\  p  C_  ( A  vH  B ) )  /\  A  =/=  0H )  ->  ( ( r  e. HAtoms  /\  ( r  C_  ( B  i^i  C )  /\  -.  r  C_  A ) )  ->  E. q  e. HAtoms  ( q 
C_  A  /\  r  C_  ( p  vH  q
) ) ) )
3029imp 419 . . . . 5  |-  ( ( ( ( ( p  e. HAtoms  /\  -.  ( B  i^i  C )  C_  A )  /\  p  C_  ( A  vH  B
) )  /\  A  =/=  0H )  /\  (
r  e. HAtoms  /\  (
r  C_  ( B  i^i  C )  /\  -.  r  C_  A ) ) )  ->  E. q  e. HAtoms  ( q  C_  A  /\  r  C_  ( p  vH  q ) ) )
31 nssne2 3397 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( q  C_  A  /\  -.  r  C_  A )  ->  q  =/=  r
)
3231adantrl 697 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( q  C_  A  /\  ( r  C_  ( B  i^i  C )  /\  -.  r  C_  A ) )  ->  q  =/=  r )
33 atnemeq0 23872 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( q  e. HAtoms  /\  r  e. HAtoms )  ->  ( q  =/=  r  <->  ( q  i^i  r )  =  0H ) )
3433ancoms 440 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( r  e. HAtoms  /\  q  e. HAtoms )  ->  ( q  =/=  r  <->  ( q  i^i  r )  =  0H ) )
3532, 34syl5ib 211 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( r  e. HAtoms  /\  q  e. HAtoms )  ->  ( (
q  C_  A  /\  ( r  C_  ( B  i^i  C )  /\  -.  r  C_  A ) )  ->  ( q  i^i  r )  =  0H ) )
3635adantll 695 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( p  e. HAtoms  /\  r  e. HAtoms )  /\  q  e. HAtoms
)  ->  ( (
q  C_  A  /\  ( r  C_  ( B  i^i  C )  /\  -.  r  C_  A ) )  ->  ( q  i^i  r )  =  0H ) )
3736adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( p  e. HAtoms  /\  r  e. HAtoms )  /\  q  e. HAtoms )  /\  r  C_  ( p  vH  q
) )  ->  (
( q  C_  A  /\  ( r  C_  ( B  i^i  C )  /\  -.  r  C_  A ) )  ->  ( q  i^i  r )  =  0H ) )
38 atelch 23839 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( q  e. HAtoms  ->  q  e.  CH )
39 chjcom 23000 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( p  e.  CH  /\  q  e.  CH )  ->  ( p  vH  q
)  =  ( q  vH  p ) )
401, 38, 39syl2an 464 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( p  e. HAtoms  /\  q  e. HAtoms )  ->  ( p  vH  q )  =  ( q  vH  p ) )
4140adantlr 696 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( p  e. HAtoms  /\  r  e. HAtoms )  /\  q  e. HAtoms
)  ->  ( p  vH  q )  =  ( q  vH  p ) )
4241sseq2d 3368 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( p  e. HAtoms  /\  r  e. HAtoms )  /\  q  e. HAtoms
)  ->  ( r  C_  ( p  vH  q
)  <->  r  C_  (
q  vH  p )
) )
43 atexch 23876 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( q  e.  CH  /\  r  e. HAtoms  /\  p  e. HAtoms
)  ->  ( (
r  C_  ( q  vH  p )  /\  (
q  i^i  r )  =  0H )  ->  p  C_  ( q  vH  r
) ) )
4438, 43syl3an1 1217 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( q  e. HAtoms  /\  r  e. HAtoms  /\  p  e. HAtoms )  ->  ( ( r  C_  ( q  vH  p
)  /\  ( q  i^i  r )  =  0H )  ->  p  C_  (
q  vH  r )
) )
45443com13 1158 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( p  e. HAtoms  /\  r  e. HAtoms  /\  q  e. HAtoms )  ->  ( ( r  C_  ( q  vH  p
)  /\  ( q  i^i  r )  =  0H )  ->  p  C_  (
q  vH  r )
) )
46453expa 1153 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( p  e. HAtoms  /\  r  e. HAtoms )  /\  q  e. HAtoms
)  ->  ( (
r  C_  ( q  vH  p )  /\  (
q  i^i  r )  =  0H )  ->  p  C_  ( q  vH  r
) ) )
4746exp3a 426 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( p  e. HAtoms  /\  r  e. HAtoms )  /\  q  e. HAtoms
)  ->  ( r  C_  ( q  vH  p
)  ->  ( (
q  i^i  r )  =  0H  ->  p  C_  ( q  vH  r
) ) ) )
4842, 47sylbid 207 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( p  e. HAtoms  /\  r  e. HAtoms )  /\  q  e. HAtoms
)  ->  ( r  C_  ( p  vH  q
)  ->  ( (
q  i^i  r )  =  0H  ->  p  C_  ( q  vH  r
) ) ) )
4948imp 419 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( p  e. HAtoms  /\  r  e. HAtoms )  /\  q  e. HAtoms )  /\  r  C_  ( p  vH  q
) )  ->  (
( q  i^i  r
)  =  0H  ->  p 
C_  ( q  vH  r ) ) )
5037, 49syld 42 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( p  e. HAtoms  /\  r  e. HAtoms )  /\  q  e. HAtoms )  /\  r  C_  ( p  vH  q
) )  ->  (
( q  C_  A  /\  ( r  C_  ( B  i^i  C )  /\  -.  r  C_  A ) )  ->  p  C_  (
q  vH  r )
) )
5150exp3a 426 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( p  e. HAtoms  /\  r  e. HAtoms )  /\  q  e. HAtoms )  /\  r  C_  ( p  vH  q
) )  ->  (
q  C_  A  ->  ( ( r  C_  ( B  i^i  C )  /\  -.  r  C_  A )  ->  p  C_  (
q  vH  r )
) ) )
5251exp31 588 . . . . . . . . . . . . . . . 16  |-  ( ( p  e. HAtoms  /\  r  e. HAtoms )  ->  ( q  e. HAtoms  ->  ( r  C_  ( p  vH  q
)  ->  ( q  C_  A  ->  ( (
r  C_  ( B  i^i  C )  /\  -.  r  C_  A )  ->  p  C_  ( q  vH  r ) ) ) ) ) )
5352com24 83 . . . . . . . . . . . . . . 15  |-  ( ( p  e. HAtoms  /\  r  e. HAtoms )  ->  ( q  C_  A  ->  ( r  C_  ( p  vH  q
)  ->  ( q  e. HAtoms  ->  ( ( r 
C_  ( B  i^i  C )  /\  -.  r  C_  A )  ->  p  C_  ( q  vH  r
) ) ) ) ) )
5453imp3a 421 . . . . . . . . . . . . . 14  |-  ( ( p  e. HAtoms  /\  r  e. HAtoms )  ->  ( (
q  C_  A  /\  r  C_  ( p  vH  q ) )  -> 
( q  e. HAtoms  ->  ( ( r  C_  ( B  i^i  C )  /\  -.  r  C_  A )  ->  p  C_  (
q  vH  r )
) ) ) )
5554com24 83 . . . . . . . . . . . . 13  |-  ( ( p  e. HAtoms  /\  r  e. HAtoms )  ->  ( (
r  C_  ( B  i^i  C )  /\  -.  r  C_  A )  -> 
( q  e. HAtoms  ->  ( ( q  C_  A  /\  r  C_  ( p  vH  q ) )  ->  p  C_  (
q  vH  r )
) ) ) )
5655imp4b 574 . . . . . . . . . . . 12  |-  ( ( ( p  e. HAtoms  /\  r  e. HAtoms )  /\  ( r 
C_  ( B  i^i  C )  /\  -.  r  C_  A ) )  -> 
( ( q  e. HAtoms  /\  ( q  C_  A  /\  r  C_  ( p  vH  q ) ) )  ->  p  C_  (
q  vH  r )
) )
5756anasss 629 . . . . . . . . . . 11  |-  ( ( p  e. HAtoms  /\  (
r  e. HAtoms  /\  (
r  C_  ( B  i^i  C )  /\  -.  r  C_  A ) ) )  ->  ( (
q  e. HAtoms  /\  (
q  C_  A  /\  r  C_  ( p  vH  q ) ) )  ->  p  C_  (
q  vH  r )
) )
58 simprl 733 . . . . . . . . . . . . 13  |-  ( ( q  e. HAtoms  /\  (
q  C_  A  /\  r  C_  ( p  vH  q ) ) )  ->  q  C_  A
)
5958a1i 11 . . . . . . . . . . . 12  |-  ( ( p  e. HAtoms  /\  (
r  e. HAtoms  /\  (
r  C_  ( B  i^i  C )  /\  -.  r  C_  A ) ) )  ->  ( (
q  e. HAtoms  /\  (
q  C_  A  /\  r  C_  ( p  vH  q ) ) )  ->  q  C_  A
) )
60 simpl 444 . . . . . . . . . . . . . . 15  |-  ( ( r  C_  B  /\  r  C_  C )  -> 
r  C_  B )
6115, 60sylbir 205 . . . . . . . . . . . . . 14  |-  ( r 
C_  ( B  i^i  C )  ->  r  C_  B )
6261ad2antrl 709 . . . . . . . . . . . . 13  |-  ( ( r  e. HAtoms  /\  (
r  C_  ( B  i^i  C )  /\  -.  r  C_  A ) )  ->  r  C_  B
)
6362adantl 453 . . . . . . . . . . . 12  |-  ( ( p  e. HAtoms  /\  (
r  e. HAtoms  /\  (
r  C_  ( B  i^i  C )  /\  -.  r  C_  A ) ) )  ->  r  C_  B )
6459, 63jctird 529 . . . . . . . . . . 11  |-  ( ( p  e. HAtoms  /\  (
r  e. HAtoms  /\  (
r  C_  ( B  i^i  C )  /\  -.  r  C_  A ) ) )  ->  ( (
q  e. HAtoms  /\  (
q  C_  A  /\  r  C_  ( p  vH  q ) ) )  ->  ( q  C_  A  /\  r  C_  B
) ) )
6557, 64jcad 520 . . . . . . . . . 10  |-  ( ( p  e. HAtoms  /\  (
r  e. HAtoms  /\  (
r  C_  ( B  i^i  C )  /\  -.  r  C_  A ) ) )  ->  ( (
q  e. HAtoms  /\  (
q  C_  A  /\  r  C_  ( p  vH  q ) ) )  ->  ( p  C_  ( q  vH  r
)  /\  ( q  C_  A  /\  r  C_  B ) ) ) )
6665exp3a 426 . . . . . . . . 9  |-  ( ( p  e. HAtoms  /\  (
r  e. HAtoms  /\  (
r  C_  ( B  i^i  C )  /\  -.  r  C_  A ) ) )  ->  ( q  e. HAtoms  ->  ( ( q 
C_  A  /\  r  C_  ( p  vH  q
) )  ->  (
p  C_  ( q  vH  r )  /\  (
q  C_  A  /\  r  C_  B ) ) ) ) )
6766adantlr 696 . . . . . . . 8  |-  ( ( ( p  e. HAtoms  /\  -.  ( B  i^i  C ) 
C_  A )  /\  ( r  e. HAtoms  /\  (
r  C_  ( B  i^i  C )  /\  -.  r  C_  A ) ) )  ->  ( q  e. HAtoms  ->  ( ( q 
C_  A  /\  r  C_  ( p  vH  q
) )  ->  (
p  C_  ( q  vH  r )  /\  (
q  C_  A  /\  r  C_  B ) ) ) ) )
6867adantlr 696 . . . . . . 7  |-  ( ( ( ( p  e. HAtoms  /\  -.  ( B  i^i  C )  C_  A )  /\  p  C_  ( A  vH  B ) )  /\  ( r  e. HAtoms  /\  ( r  C_  ( B  i^i  C )  /\  -.  r  C_  A ) ) )  ->  (
q  e. HAtoms  ->  ( ( q  C_  A  /\  r  C_  ( p  vH  q ) )  -> 
( p  C_  (
q  vH  r )  /\  ( q  C_  A  /\  r  C_  B ) ) ) ) )
6968adantlr 696 . . . . . 6  |-  ( ( ( ( ( p  e. HAtoms  /\  -.  ( B  i^i  C )  C_  A )  /\  p  C_  ( A  vH  B
) )  /\  A  =/=  0H )  /\  (
r  e. HAtoms  /\  (
r  C_  ( B  i^i  C )  /\  -.  r  C_  A ) ) )  ->  ( q  e. HAtoms  ->  ( ( q 
C_  A  /\  r  C_  ( p  vH  q
) )  ->  (
p  C_  ( q  vH  r )  /\  (
q  C_  A  /\  r  C_  B ) ) ) ) )
7069reximdvai 2808 . . . . 5  |-  ( ( ( ( ( p  e. HAtoms  /\  -.  ( B  i^i  C )  C_  A )  /\  p  C_  ( A  vH  B
) )  /\  A  =/=  0H )  /\  (
r  e. HAtoms  /\  (
r  C_  ( B  i^i  C )  /\  -.  r  C_  A ) ) )  ->  ( E. q  e. HAtoms  ( q  C_  A  /\  r  C_  ( p  vH  q
) )  ->  E. q  e. HAtoms  ( p  C_  (
q  vH  r )  /\  ( q  C_  A  /\  r  C_  B ) ) ) )
7130, 70mpd 15 . . . 4  |-  ( ( ( ( ( p  e. HAtoms  /\  -.  ( B  i^i  C )  C_  A )  /\  p  C_  ( A  vH  B
) )  /\  A  =/=  0H )  /\  (
r  e. HAtoms  /\  (
r  C_  ( B  i^i  C )  /\  -.  r  C_  A ) ) )  ->  E. q  e. HAtoms  ( p  C_  (
q  vH  r )  /\  ( q  C_  A  /\  r  C_  B ) ) )
7271exp32 589 . . 3  |-  ( ( ( ( p  e. HAtoms  /\  -.  ( B  i^i  C )  C_  A )  /\  p  C_  ( A  vH  B ) )  /\  A  =/=  0H )  ->  ( r  e. HAtoms  ->  ( ( r  C_  ( B  i^i  C )  /\  -.  r  C_  A )  ->  E. q  e. HAtoms  ( p  C_  (
q  vH  r )  /\  ( q  C_  A  /\  r  C_  B ) ) ) ) )
7372reximdvai 2808 . 2  |-  ( ( ( ( p  e. HAtoms  /\  -.  ( B  i^i  C )  C_  A )  /\  p  C_  ( A  vH  B ) )  /\  A  =/=  0H )  ->  ( E. r  e. HAtoms  ( r  C_  ( B  i^i  C )  /\  -.  r  C_  A )  ->  E. r  e. HAtoms  E. q  e. HAtoms  ( p  C_  (
q  vH  r )  /\  ( q  C_  A  /\  r  C_  B ) ) ) )
7414, 73mpd 15 1  |-  ( ( ( ( p  e. HAtoms  /\  -.  ( B  i^i  C )  C_  A )  /\  p  C_  ( A  vH  B ) )  /\  A  =/=  0H )  ->  E. r  e. HAtoms  E. q  e. HAtoms  ( p  C_  (
q  vH  r )  /\  ( q  C_  A  /\  r  C_  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   E.wrex 2698    i^i cin 3311    C_ wss 3312  (class class class)co 6073   CHcch 22424    vH chj 22428   0Hc0h 22430  HAtomscat 22460
This theorem is referenced by:  mdsymlem4  23901
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cc 8307  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062  ax-hilex 22494  ax-hfvadd 22495  ax-hvcom 22496  ax-hvass 22497  ax-hv0cl 22498  ax-hvaddid 22499  ax-hfvmul 22500  ax-hvmulid 22501  ax-hvmulass 22502  ax-hvdistr1 22503  ax-hvdistr2 22504  ax-hvmul0 22505  ax-hfi 22573  ax-his1 22576  ax-his2 22577  ax-his3 22578  ax-his4 22579  ax-hcompl 22696
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-omul 6721  df-er 6897  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-oi 7471  df-card 7818  df-acn 7821  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-ioo 10912  df-ico 10914  df-icc 10915  df-fz 11036  df-fzo 11128  df-fl 11194  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-clim 12274  df-rlim 12275  df-sum 12472  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-starv 13536  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-hom 13545  df-cco 13546  df-rest 13642  df-topn 13643  df-topgen 13659  df-pt 13660  df-prds 13663  df-xrs 13718  df-0g 13719  df-gsum 13720  df-qtop 13725  df-imas 13726  df-xps 13728  df-mre 13803  df-mrc 13804  df-acs 13806  df-mnd 14682  df-submnd 14731  df-mulg 14807  df-cntz 15108  df-cmn 15406  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-fbas 16691  df-fg 16692  df-cnfld 16696  df-top 16955  df-bases 16957  df-topon 16958  df-topsp 16959  df-cld 17075  df-ntr 17076  df-cls 17077  df-nei 17154  df-cn 17283  df-cnp 17284  df-lm 17285  df-haus 17371  df-tx 17586  df-hmeo 17779  df-fil 17870  df-fm 17962  df-flim 17963  df-flf 17964  df-xms 18342  df-ms 18343  df-tms 18344  df-cfil 19200  df-cau 19201  df-cmet 19202  df-grpo 21771  df-gid 21772  df-ginv 21773  df-gdiv 21774  df-ablo 21862  df-subgo 21882  df-vc 22017  df-nv 22063  df-va 22066  df-ba 22067  df-sm 22068  df-0v 22069  df-vs 22070  df-nmcv 22071  df-ims 22072  df-dip 22189  df-ssp 22213  df-ph 22306  df-cbn 22357  df-hnorm 22463  df-hba 22464  df-hvsub 22466  df-hlim 22467  df-hcau 22468  df-sh 22701  df-ch 22716  df-oc 22746  df-ch0 22747  df-shs 22802  df-span 22803  df-chj 22804  df-chsup 22805  df-pjh 22889  df-cv 23774  df-at 23833
  Copyright terms: Public domain W3C validator