Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendlmod Unicode version

Theorem mendlmod 27501
Description: The module endomorphism algebra is a left module. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
mendassa.a  |-  A  =  (MEndo `  M )
mendassa.s  |-  S  =  (Scalar `  M )
Assertion
Ref Expression
mendlmod  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  A  e.  LMod )

Proof of Theorem mendlmod
Dummy variables  x  y  z  u  k 
v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mendassa.a . . . 4  |-  A  =  (MEndo `  M )
21mendbas 27492 . . 3  |-  ( M LMHom 
M )  =  (
Base `  A )
32a1i 10 . 2  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  ( M LMHom  M )  =  (
Base `  A )
)
4 eqidd 2284 . 2  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  ( +g  `  A )  =  ( +g  `  A
) )
5 mendassa.s . . . 4  |-  S  =  (Scalar `  M )
61, 5mendsca 27497 . . 3  |-  S  =  (Scalar `  A )
76a1i 10 . 2  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  S  =  (Scalar `  A )
)
8 eqidd 2284 . 2  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  ( .s `  A )  =  ( .s `  A
) )
9 eqidd 2284 . 2  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  ( Base `  S )  =  ( Base `  S
) )
10 eqidd 2284 . 2  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  ( +g  `  S )  =  ( +g  `  S
) )
11 eqidd 2284 . 2  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  ( .r `  S )  =  ( .r `  S
) )
12 eqidd 2284 . 2  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  ( 1r `  S )  =  ( 1r `  S
) )
13 crngrng 15351 . . 3  |-  ( S  e.  CRing  ->  S  e.  Ring )
1413adantl 452 . 2  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  S  e.  Ring )
151mendrng 27500 . . . 4  |-  ( M  e.  LMod  ->  A  e. 
Ring )
1615adantr 451 . . 3  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  A  e.  Ring )
17 rnggrp 15346 . . 3  |-  ( A  e.  Ring  ->  A  e. 
Grp )
1816, 17syl 15 . 2  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  A  e.  Grp )
19 eqid 2283 . . . . 5  |-  ( .s
`  M )  =  ( .s `  M
)
20 eqid 2283 . . . . 5  |-  ( Base `  S )  =  (
Base `  S )
21 eqid 2283 . . . . 5  |-  ( Base `  M )  =  (
Base `  M )
22 eqid 2283 . . . . 5  |-  ( .s
`  A )  =  ( .s `  A
)
231, 19, 2, 5, 20, 21, 22mendvsca 27499 . . . 4  |-  ( ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M ) )  ->  ( x
( .s `  A
) y )  =  ( ( ( Base `  M )  X.  {
x } )  o F ( .s `  M ) y ) )
24233adant1 973 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M ) )  ->  ( x
( .s `  A
) y )  =  ( ( ( Base `  M )  X.  {
x } )  o F ( .s `  M ) y ) )
2521, 19, 5, 20lmhmvsca 15802 . . . 4  |-  ( ( S  e.  CRing  /\  x  e.  ( Base `  S
)  /\  y  e.  ( M LMHom  M ) )  ->  ( ( (
Base `  M )  X.  { x } )  o F ( .s
`  M ) y )  e.  ( M LMHom 
M ) )
26253adant1l 1174 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M ) )  ->  ( (
( Base `  M )  X.  { x } )  o F ( .s
`  M ) y )  e.  ( M LMHom 
M ) )
2724, 26eqeltrd 2357 . 2  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M ) )  ->  ( x
( .s `  A
) y )  e.  ( M LMHom  M ) )
28 simpr2 962 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  y  e.  ( M LMHom  M ) )
29 simpr3 963 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  z  e.  ( M LMHom  M ) )
30 eqid 2283 . . . . . 6  |-  ( +g  `  M )  =  ( +g  `  M )
31 eqid 2283 . . . . . 6  |-  ( +g  `  A )  =  ( +g  `  A )
321, 2, 30, 31mendplusg 27494 . . . . 5  |-  ( ( y  e.  ( M LMHom 
M )  /\  z  e.  ( M LMHom  M ) )  ->  ( y
( +g  `  A ) z )  =  ( y  o F ( +g  `  M ) z ) )
3328, 29, 32syl2anc 642 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
y ( +g  `  A
) z )  =  ( y  o F ( +g  `  M
) z ) )
3433oveq2d 5874 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( ( Base `  M
)  X.  { x } )  o F ( .s `  M
) ( y ( +g  `  A ) z ) )  =  ( ( ( Base `  M )  X.  {
x } )  o F ( .s `  M ) ( y  o F ( +g  `  M ) z ) ) )
35 simpr1 961 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  x  e.  ( Base `  S
) )
3618adantr 451 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  A  e.  Grp )
372, 31grpcl 14495 . . . . 5  |-  ( ( A  e.  Grp  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) )  ->  ( y
( +g  `  A ) z )  e.  ( M LMHom  M ) )
3836, 28, 29, 37syl3anc 1182 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
y ( +g  `  A
) z )  e.  ( M LMHom  M ) )
391, 19, 2, 5, 20, 21, 22mendvsca 27499 . . . 4  |-  ( ( x  e.  ( Base `  S )  /\  (
y ( +g  `  A
) z )  e.  ( M LMHom  M ) )  ->  ( x
( .s `  A
) ( y ( +g  `  A ) z ) )  =  ( ( ( Base `  M )  X.  {
x } )  o F ( .s `  M ) ( y ( +g  `  A
) z ) ) )
4035, 38, 39syl2anc 642 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( .s `  A ) ( y ( +g  `  A
) z ) )  =  ( ( (
Base `  M )  X.  { x } )  o F ( .s
`  M ) ( y ( +g  `  A
) z ) ) )
4135, 28, 23syl2anc 642 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( .s `  A ) y )  =  ( ( (
Base `  M )  X.  { x } )  o F ( .s
`  M ) y ) )
421, 19, 2, 5, 20, 21, 22mendvsca 27499 . . . . . 6  |-  ( ( x  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) )  ->  ( x
( .s `  A
) z )  =  ( ( ( Base `  M )  X.  {
x } )  o F ( .s `  M ) z ) )
4335, 29, 42syl2anc 642 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( .s `  A ) z )  =  ( ( (
Base `  M )  X.  { x } )  o F ( .s
`  M ) z ) )
4441, 43oveq12d 5876 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( x ( .s
`  A ) y )  o F ( +g  `  M ) ( x ( .s
`  A ) z ) )  =  ( ( ( ( Base `  M )  X.  {
x } )  o F ( .s `  M ) y )  o F ( +g  `  M ) ( ( ( Base `  M
)  X.  { x } )  o F ( .s `  M
) z ) ) )
45273adant3r3 1162 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( .s `  A ) y )  e.  ( M LMHom  M
) )
46 eleq1 2343 . . . . . . . . 9  |-  ( y  =  z  ->  (
y  e.  ( M LMHom 
M )  <->  z  e.  ( M LMHom  M ) ) )
47463anbi3d 1258 . . . . . . . 8  |-  ( y  =  z  ->  (
( ( M  e. 
LMod  /\  S  e.  CRing )  /\  x  e.  (
Base `  S )  /\  y  e.  ( M LMHom  M ) )  <->  ( ( M  e.  LMod  /\  S  e.  CRing )  /\  x  e.  ( Base `  S
)  /\  z  e.  ( M LMHom  M ) ) ) )
48 oveq2 5866 . . . . . . . . 9  |-  ( y  =  z  ->  (
x ( .s `  A ) y )  =  ( x ( .s `  A ) z ) )
4948eleq1d 2349 . . . . . . . 8  |-  ( y  =  z  ->  (
( x ( .s
`  A ) y )  e.  ( M LMHom 
M )  <->  ( x
( .s `  A
) z )  e.  ( M LMHom  M ) ) )
5047, 49imbi12d 311 . . . . . . 7  |-  ( y  =  z  ->  (
( ( ( M  e.  LMod  /\  S  e. 
CRing )  /\  x  e.  ( Base `  S
)  /\  y  e.  ( M LMHom  M ) )  ->  ( x ( .s `  A ) y )  e.  ( M LMHom  M ) )  <-> 
( ( ( M  e.  LMod  /\  S  e. 
CRing )  /\  x  e.  ( Base `  S
)  /\  z  e.  ( M LMHom  M ) )  ->  ( x ( .s `  A ) z )  e.  ( M LMHom  M ) ) ) )
5150, 27chvarv 1953 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  x  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) )  ->  ( x
( .s `  A
) z )  e.  ( M LMHom  M ) )
52513adant3r2 1161 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( .s `  A ) z )  e.  ( M LMHom  M
) )
531, 2, 30, 31mendplusg 27494 . . . . 5  |-  ( ( ( x ( .s
`  A ) y )  e.  ( M LMHom 
M )  /\  (
x ( .s `  A ) z )  e.  ( M LMHom  M
) )  ->  (
( x ( .s
`  A ) y ) ( +g  `  A
) ( x ( .s `  A ) z ) )  =  ( ( x ( .s `  A ) y )  o F ( +g  `  M
) ( x ( .s `  A ) z ) ) )
5445, 52, 53syl2anc 642 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( x ( .s
`  A ) y ) ( +g  `  A
) ( x ( .s `  A ) z ) )  =  ( ( x ( .s `  A ) y )  o F ( +g  `  M
) ( x ( .s `  A ) z ) ) )
55 fvex 5539 . . . . . 6  |-  ( Base `  M )  e.  _V
5655a1i 10 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( Base `  M )  e. 
_V )
57 fconst6g 5430 . . . . . 6  |-  ( x  e.  ( Base `  S
)  ->  ( ( Base `  M )  X. 
{ x } ) : ( Base `  M
) --> ( Base `  S
) )
5835, 57syl 15 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( Base `  M )  X.  { x } ) : ( Base `  M
) --> ( Base `  S
) )
5921, 21lmhmf 15791 . . . . . 6  |-  ( y  e.  ( M LMHom  M
)  ->  y :
( Base `  M ) --> ( Base `  M )
)
6028, 59syl 15 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  y : ( Base `  M
) --> ( Base `  M
) )
6121, 21lmhmf 15791 . . . . . 6  |-  ( z  e.  ( M LMHom  M
)  ->  z :
( Base `  M ) --> ( Base `  M )
)
6229, 61syl 15 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  z : ( Base `  M
) --> ( Base `  M
) )
63 simpll 730 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  M  e.  LMod )
6421, 30, 5, 19, 20lmodvsdi 15650 . . . . . 6  |-  ( ( M  e.  LMod  /\  (
w  e.  ( Base `  S )  /\  v  e.  ( Base `  M
)  /\  u  e.  ( Base `  M )
) )  ->  (
w ( .s `  M ) ( v ( +g  `  M
) u ) )  =  ( ( w ( .s `  M
) v ) ( +g  `  M ) ( w ( .s
`  M ) u ) ) )
6563, 64sylan 457 . . . . 5  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  /\  ( w  e.  ( Base `  S )  /\  v  e.  ( Base `  M )  /\  u  e.  ( Base `  M
) ) )  -> 
( w ( .s
`  M ) ( v ( +g  `  M
) u ) )  =  ( ( w ( .s `  M
) v ) ( +g  `  M ) ( w ( .s
`  M ) u ) ) )
6656, 58, 60, 62, 65caofdi 6113 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( ( Base `  M
)  X.  { x } )  o F ( .s `  M
) ( y  o F ( +g  `  M
) z ) )  =  ( ( ( ( Base `  M
)  X.  { x } )  o F ( .s `  M
) y )  o F ( +g  `  M
) ( ( (
Base `  M )  X.  { x } )  o F ( .s
`  M ) z ) ) )
6744, 54, 663eqtr4d 2325 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( x ( .s
`  A ) y ) ( +g  `  A
) ( x ( .s `  A ) z ) )  =  ( ( ( Base `  M )  X.  {
x } )  o F ( .s `  M ) ( y  o F ( +g  `  M ) z ) ) )
6834, 40, 673eqtr4d 2325 . 2  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( .s `  A ) ( y ( +g  `  A
) z ) )  =  ( ( x ( .s `  A
) y ) ( +g  `  A ) ( x ( .s
`  A ) z ) ) )
6955a1i 10 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( Base `  M )  e. 
_V )
70 simpr3 963 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  z  e.  ( M LMHom  M ) )
7170, 61syl 15 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  z : ( Base `  M
) --> ( Base `  M
) )
72 simpr1 961 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  x  e.  ( Base `  S
) )
7372, 57syl 15 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( Base `  M )  X.  { x } ) : ( Base `  M
) --> ( Base `  S
) )
74 simpr2 962 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  y  e.  ( Base `  S
) )
75 fconst6g 5430 . . . . 5  |-  ( y  e.  ( Base `  S
)  ->  ( ( Base `  M )  X. 
{ y } ) : ( Base `  M
) --> ( Base `  S
) )
7674, 75syl 15 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( Base `  M )  X.  { y } ) : ( Base `  M
) --> ( Base `  S
) )
77 simpll 730 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  M  e.  LMod )
78 eqid 2283 . . . . . 6  |-  ( +g  `  S )  =  ( +g  `  S )
7921, 30, 5, 19, 20, 78lmodvsdir 15652 . . . . 5  |-  ( ( M  e.  LMod  /\  (
w  e.  ( Base `  S )  /\  v  e.  ( Base `  S
)  /\  u  e.  ( Base `  M )
) )  ->  (
( w ( +g  `  S ) v ) ( .s `  M
) u )  =  ( ( w ( .s `  M ) u ) ( +g  `  M ) ( v ( .s `  M
) u ) ) )
8077, 79sylan 457 . . . 4  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  /\  ( w  e.  ( Base `  S
)  /\  v  e.  ( Base `  S )  /\  u  e.  ( Base `  M ) ) )  ->  ( (
w ( +g  `  S
) v ) ( .s `  M ) u )  =  ( ( w ( .s
`  M ) u ) ( +g  `  M
) ( v ( .s `  M ) u ) ) )
8169, 71, 73, 76, 80caofdir 6114 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( ( ( Base `  M )  X.  {
x } )  o F ( +g  `  S
) ( ( Base `  M )  X.  {
y } ) )  o F ( .s
`  M ) z )  =  ( ( ( ( Base `  M
)  X.  { x } )  o F ( .s `  M
) z )  o F ( +g  `  M
) ( ( (
Base `  M )  X.  { y } )  o F ( .s
`  M ) z ) ) )
8214adantr 451 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  S  e.  Ring )
8320, 78rngacl 15368 . . . . . 6  |-  ( ( S  e.  Ring  /\  x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
)  ->  ( x
( +g  `  S ) y )  e.  (
Base `  S )
)
8482, 72, 74, 83syl3anc 1182 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( +g  `  S
) y )  e.  ( Base `  S
) )
851, 19, 2, 5, 20, 21, 22mendvsca 27499 . . . . 5  |-  ( ( ( x ( +g  `  S ) y )  e.  ( Base `  S
)  /\  z  e.  ( M LMHom  M ) )  ->  ( ( x ( +g  `  S
) y ) ( .s `  A ) z )  =  ( ( ( Base `  M
)  X.  { ( x ( +g  `  S
) y ) } )  o F ( .s `  M ) z ) )
8684, 70, 85syl2anc 642 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( x ( +g  `  S ) y ) ( .s `  A
) z )  =  ( ( ( Base `  M )  X.  {
( x ( +g  `  S ) y ) } )  o F ( .s `  M
) z ) )
8769, 72, 74ofc12 6102 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( ( Base `  M
)  X.  { x } )  o F ( +g  `  S
) ( ( Base `  M )  X.  {
y } ) )  =  ( ( Base `  M )  X.  {
( x ( +g  `  S ) y ) } ) )
8887oveq1d 5873 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( ( ( Base `  M )  X.  {
x } )  o F ( +g  `  S
) ( ( Base `  M )  X.  {
y } ) )  o F ( .s
`  M ) z )  =  ( ( ( Base `  M
)  X.  { ( x ( +g  `  S
) y ) } )  o F ( .s `  M ) z ) )
8986, 88eqtr4d 2318 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( x ( +g  `  S ) y ) ( .s `  A
) z )  =  ( ( ( (
Base `  M )  X.  { x } )  o F ( +g  `  S ) ( (
Base `  M )  X.  { y } ) )  o F ( .s `  M ) z ) )
90513adant3r2 1161 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( .s `  A ) z )  e.  ( M LMHom  M
) )
91 eleq1 2343 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  e.  ( Base `  S )  <->  y  e.  ( Base `  S )
) )
92913anbi2d 1257 . . . . . . . 8  |-  ( x  =  y  ->  (
( ( M  e. 
LMod  /\  S  e.  CRing )  /\  x  e.  (
Base `  S )  /\  z  e.  ( M LMHom  M ) )  <->  ( ( M  e.  LMod  /\  S  e.  CRing )  /\  y  e.  ( Base `  S
)  /\  z  e.  ( M LMHom  M ) ) ) )
93 oveq1 5865 . . . . . . . . 9  |-  ( x  =  y  ->  (
x ( .s `  A ) z )  =  ( y ( .s `  A ) z ) )
9493eleq1d 2349 . . . . . . . 8  |-  ( x  =  y  ->  (
( x ( .s
`  A ) z )  e.  ( M LMHom 
M )  <->  ( y
( .s `  A
) z )  e.  ( M LMHom  M ) ) )
9592, 94imbi12d 311 . . . . . . 7  |-  ( x  =  y  ->  (
( ( ( M  e.  LMod  /\  S  e. 
CRing )  /\  x  e.  ( Base `  S
)  /\  z  e.  ( M LMHom  M ) )  ->  ( x ( .s `  A ) z )  e.  ( M LMHom  M ) )  <-> 
( ( ( M  e.  LMod  /\  S  e. 
CRing )  /\  y  e.  ( Base `  S
)  /\  z  e.  ( M LMHom  M ) )  ->  ( y ( .s `  A ) z )  e.  ( M LMHom  M ) ) ) )
9695, 51chvarv 1953 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) )  ->  ( y
( .s `  A
) z )  e.  ( M LMHom  M ) )
97963adant3r1 1160 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
y ( .s `  A ) z )  e.  ( M LMHom  M
) )
981, 2, 30, 31mendplusg 27494 . . . . 5  |-  ( ( ( x ( .s
`  A ) z )  e.  ( M LMHom 
M )  /\  (
y ( .s `  A ) z )  e.  ( M LMHom  M
) )  ->  (
( x ( .s
`  A ) z ) ( +g  `  A
) ( y ( .s `  A ) z ) )  =  ( ( x ( .s `  A ) z )  o F ( +g  `  M
) ( y ( .s `  A ) z ) ) )
9990, 97, 98syl2anc 642 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( x ( .s
`  A ) z ) ( +g  `  A
) ( y ( .s `  A ) z ) )  =  ( ( x ( .s `  A ) z )  o F ( +g  `  M
) ( y ( .s `  A ) z ) ) )
10072, 70, 42syl2anc 642 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( .s `  A ) z )  =  ( ( (
Base `  M )  X.  { x } )  o F ( .s
`  M ) z ) )
1011, 19, 2, 5, 20, 21, 22mendvsca 27499 . . . . . 6  |-  ( ( y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) )  ->  ( y
( .s `  A
) z )  =  ( ( ( Base `  M )  X.  {
y } )  o F ( .s `  M ) z ) )
10274, 70, 101syl2anc 642 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
y ( .s `  A ) z )  =  ( ( (
Base `  M )  X.  { y } )  o F ( .s
`  M ) z ) )
103100, 102oveq12d 5876 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( x ( .s
`  A ) z )  o F ( +g  `  M ) ( y ( .s
`  A ) z ) )  =  ( ( ( ( Base `  M )  X.  {
x } )  o F ( .s `  M ) z )  o F ( +g  `  M ) ( ( ( Base `  M
)  X.  { y } )  o F ( .s `  M
) z ) ) )
10499, 103eqtrd 2315 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( x ( .s
`  A ) z ) ( +g  `  A
) ( y ( .s `  A ) z ) )  =  ( ( ( (
Base `  M )  X.  { x } )  o F ( .s
`  M ) z )  o F ( +g  `  M ) ( ( ( Base `  M )  X.  {
y } )  o F ( .s `  M ) z ) ) )
10581, 89, 1043eqtr4d 2325 . 2  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( x ( +g  `  S ) y ) ( .s `  A
) z )  =  ( ( x ( .s `  A ) z ) ( +g  `  A ) ( y ( .s `  A
) z ) ) )
106 ovex 5883 . . . . 5  |-  ( x ( .r `  S
) y )  e. 
_V
107106a1i 10 . . . 4  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  /\  k  e.  (
Base `  M )
)  ->  ( x
( .r `  S
) y )  e. 
_V )
108 ffvelrn 5663 . . . . 5  |-  ( ( z : ( Base `  M ) --> ( Base `  M )  /\  k  e.  ( Base `  M
) )  ->  (
z `  k )  e.  ( Base `  M
) )
10971, 108sylan 457 . . . 4  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  /\  k  e.  (
Base `  M )
)  ->  ( z `  k )  e.  (
Base `  M )
)
110 fconstmpt 4732 . . . . 5  |-  ( (
Base `  M )  X.  { ( x ( .r `  S ) y ) } )  =  ( k  e.  ( Base `  M
)  |->  ( x ( .r `  S ) y ) )
111110a1i 10 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( Base `  M )  X.  { ( x ( .r `  S ) y ) } )  =  ( k  e.  ( Base `  M
)  |->  ( x ( .r `  S ) y ) ) )
11271feqmptd 5575 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  z  =  ( k  e.  ( Base `  M
)  |->  ( z `  k ) ) )
11369, 107, 109, 111, 112offval2 6095 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( ( Base `  M
)  X.  { ( x ( .r `  S ) y ) } )  o F ( .s `  M
) z )  =  ( k  e.  (
Base `  M )  |->  ( ( x ( .r `  S ) y ) ( .s
`  M ) ( z `  k ) ) ) )
114 eqid 2283 . . . . . 6  |-  ( .r
`  S )  =  ( .r `  S
)
11520, 114rngcl 15354 . . . . 5  |-  ( ( S  e.  Ring  /\  x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
)  ->  ( x
( .r `  S
) y )  e.  ( Base `  S
) )
11682, 72, 74, 115syl3anc 1182 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( .r `  S ) y )  e.  ( Base `  S
) )
1171, 19, 2, 5, 20, 21, 22mendvsca 27499 . . . 4  |-  ( ( ( x ( .r
`  S ) y )  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) )  ->  ( (
x ( .r `  S ) y ) ( .s `  A
) z )  =  ( ( ( Base `  M )  X.  {
( x ( .r
`  S ) y ) } )  o F ( .s `  M ) z ) )
118116, 70, 117syl2anc 642 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( x ( .r
`  S ) y ) ( .s `  A ) z )  =  ( ( (
Base `  M )  X.  { ( x ( .r `  S ) y ) } )  o F ( .s
`  M ) z ) )
11972adantr 451 . . . . 5  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  /\  k  e.  (
Base `  M )
)  ->  x  e.  ( Base `  S )
)
120 ovex 5883 . . . . . 6  |-  ( y ( .s `  M
) ( z `  k ) )  e. 
_V
121120a1i 10 . . . . 5  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  /\  k  e.  (
Base `  M )
)  ->  ( y
( .s `  M
) ( z `  k ) )  e. 
_V )
122 fconstmpt 4732 . . . . . 6  |-  ( (
Base `  M )  X.  { x } )  =  ( k  e.  ( Base `  M
)  |->  x )
123122a1i 10 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( Base `  M )  X.  { x } )  =  ( k  e.  ( Base `  M
)  |->  x ) )
124 simplr2 998 . . . . . . 7  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  /\  k  e.  (
Base `  M )
)  ->  y  e.  ( Base `  S )
)
125 fconstmpt 4732 . . . . . . . 8  |-  ( (
Base `  M )  X.  { y } )  =  ( k  e.  ( Base `  M
)  |->  y )
126125a1i 10 . . . . . . 7  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( Base `  M )  X.  { y } )  =  ( k  e.  ( Base `  M
)  |->  y ) )
12769, 124, 109, 126, 112offval2 6095 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( ( Base `  M
)  X.  { y } )  o F ( .s `  M
) z )  =  ( k  e.  (
Base `  M )  |->  ( y ( .s
`  M ) ( z `  k ) ) ) )
128102, 127eqtrd 2315 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
y ( .s `  A ) z )  =  ( k  e.  ( Base `  M
)  |->  ( y ( .s `  M ) ( z `  k
) ) ) )
12969, 119, 121, 123, 128offval2 6095 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( ( Base `  M
)  X.  { x } )  o F ( .s `  M
) ( y ( .s `  A ) z ) )  =  ( k  e.  (
Base `  M )  |->  ( x ( .s
`  M ) ( y ( .s `  M ) ( z `
 k ) ) ) ) )
1301, 19, 2, 5, 20, 21, 22mendvsca 27499 . . . . 5  |-  ( ( x  e.  ( Base `  S )  /\  (
y ( .s `  A ) z )  e.  ( M LMHom  M
) )  ->  (
x ( .s `  A ) ( y ( .s `  A
) z ) )  =  ( ( (
Base `  M )  X.  { x } )  o F ( .s
`  M ) ( y ( .s `  A ) z ) ) )
13172, 97, 130syl2anc 642 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( .s `  A ) ( y ( .s `  A
) z ) )  =  ( ( (
Base `  M )  X.  { x } )  o F ( .s
`  M ) ( y ( .s `  A ) z ) ) )
13277adantr 451 . . . . . 6  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  /\  k  e.  (
Base `  M )
)  ->  M  e.  LMod )
13321, 5, 19, 20, 114lmodvsass 15654 . . . . . 6  |-  ( ( M  e.  LMod  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
)  /\  ( z `  k )  e.  (
Base `  M )
) )  ->  (
( x ( .r
`  S ) y ) ( .s `  M ) ( z `
 k ) )  =  ( x ( .s `  M ) ( y ( .s
`  M ) ( z `  k ) ) ) )
134132, 119, 124, 109, 133syl13anc 1184 . . . . 5  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  /\  k  e.  (
Base `  M )
)  ->  ( (
x ( .r `  S ) y ) ( .s `  M
) ( z `  k ) )  =  ( x ( .s
`  M ) ( y ( .s `  M ) ( z `
 k ) ) ) )
135134mpteq2dva 4106 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
k  e.  ( Base `  M )  |->  ( ( x ( .r `  S ) y ) ( .s `  M
) ( z `  k ) ) )  =  ( k  e.  ( Base `  M
)  |->  ( x ( .s `  M ) ( y ( .s
`  M ) ( z `  k ) ) ) ) )
136129, 131, 1353eqtr4d 2325 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
x ( .s `  A ) ( y ( .s `  A
) z ) )  =  ( k  e.  ( Base `  M
)  |->  ( ( x ( .r `  S
) y ) ( .s `  M ) ( z `  k
) ) ) )
137113, 118, 1363eqtr4d 2325 . 2  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S )  /\  z  e.  ( M LMHom  M ) ) )  ->  (
( x ( .r
`  S ) y ) ( .s `  A ) z )  =  ( x ( .s `  A ) ( y ( .s
`  A ) z ) ) )
13814adantr 451 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  x  e.  ( M LMHom  M ) )  ->  S  e.  Ring )
139 eqid 2283 . . . . . 6  |-  ( 1r
`  S )  =  ( 1r `  S
)
14020, 139rngidcl 15361 . . . . 5  |-  ( S  e.  Ring  ->  ( 1r
`  S )  e.  ( Base `  S
) )
141138, 140syl 15 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  x  e.  ( M LMHom  M ) )  ->  ( 1r `  S )  e.  ( Base `  S
) )
1421, 19, 2, 5, 20, 21, 22mendvsca 27499 . . . 4  |-  ( ( ( 1r `  S
)  e.  ( Base `  S )  /\  x  e.  ( M LMHom  M ) )  ->  ( ( 1r `  S ) ( .s `  A ) x )  =  ( ( ( Base `  M
)  X.  { ( 1r `  S ) } )  o F ( .s `  M
) x ) )
143141, 142sylancom 648 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  x  e.  ( M LMHom  M ) )  ->  (
( 1r `  S
) ( .s `  A ) x )  =  ( ( (
Base `  M )  X.  { ( 1r `  S ) } )  o F ( .s
`  M ) x ) )
14455a1i 10 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  x  e.  ( M LMHom  M ) )  ->  ( Base `  M )  e. 
_V )
14521, 21lmhmf 15791 . . . . 5  |-  ( x  e.  ( M LMHom  M
)  ->  x :
( Base `  M ) --> ( Base `  M )
)
146145adantl 452 . . . 4  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  x  e.  ( M LMHom  M ) )  ->  x : ( Base `  M
) --> ( Base `  M
) )
147 simpll 730 . . . . 5  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  x  e.  ( M LMHom  M ) )  ->  M  e.  LMod )
14821, 5, 19, 139lmodvs1 15658 . . . . 5  |-  ( ( M  e.  LMod  /\  y  e.  ( Base `  M
) )  ->  (
( 1r `  S
) ( .s `  M ) y )  =  y )
149147, 148sylan 457 . . . 4  |-  ( ( ( ( M  e. 
LMod  /\  S  e.  CRing )  /\  x  e.  ( M LMHom  M ) )  /\  y  e.  (
Base `  M )
)  ->  ( ( 1r `  S ) ( .s `  M ) y )  =  y )
150144, 146, 141, 149caofid0l 6105 . . 3  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  x  e.  ( M LMHom  M ) )  ->  (
( ( Base `  M
)  X.  { ( 1r `  S ) } )  o F ( .s `  M
) x )  =  x )
151143, 150eqtrd 2315 . 2  |-  ( ( ( M  e.  LMod  /\  S  e.  CRing )  /\  x  e.  ( M LMHom  M ) )  ->  (
( 1r `  S
) ( .s `  A ) x )  =  x )
1523, 4, 7, 8, 9, 10, 11, 12, 14, 18, 27, 68, 105, 137, 151islmodd 15633 1  |-  ( ( M  e.  LMod  /\  S  e.  CRing )  ->  A  e.  LMod )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   _Vcvv 2788   {csn 3640    e. cmpt 4077    X. cxp 4687   -->wf 5251   ` cfv 5255  (class class class)co 5858    o Fcof 6076   Basecbs 13148   +g cplusg 13208   .rcmulr 13209  Scalarcsca 13211   .scvsca 13212   Grpcgrp 14362   Ringcrg 15337   CRingccrg 15338   1rcur 15339   LModclmod 15627   LMHom clmhm 15776  MEndocmend 27489
This theorem is referenced by:  mendassa  27502
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-0g 13404  df-mnd 14367  df-mhm 14415  df-grp 14489  df-minusg 14490  df-ghm 14681  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-cring 15341  df-ur 15342  df-lmod 15629  df-lmhm 15779  df-mend 27490
  Copyright terms: Public domain W3C validator