Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendplusgfval Unicode version

Theorem mendplusgfval 27493
Description: Addition in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.)
Hypotheses
Ref Expression
mendplusgfval.a  |-  A  =  (MEndo `  M )
mendplusgfval.b  |-  B  =  ( Base `  A
)
mendplusgfval.p  |-  .+  =  ( +g  `  M )
Assertion
Ref Expression
mendplusgfval  |-  ( +g  `  A )  =  ( x  e.  B , 
y  e.  B  |->  ( x  o F  .+  y ) )
Distinct variable groups:    x, y, B    x, M, y    x,  .+ , y
Allowed substitution hints:    A( x, y)

Proof of Theorem mendplusgfval
StepHypRef Expression
1 mendplusgfval.a . . . . 5  |-  A  =  (MEndo `  M )
2 mendplusgfval.b . . . . . . 7  |-  B  =  ( Base `  A
)
31mendbas 27492 . . . . . . 7  |-  ( M LMHom 
M )  =  (
Base `  A )
42, 3eqtr4i 2306 . . . . . 6  |-  B  =  ( M LMHom  M )
5 mendplusgfval.p . . . . . . . . . 10  |-  .+  =  ( +g  `  M )
6 ofeq 6080 . . . . . . . . . 10  |-  (  .+  =  ( +g  `  M
)  ->  o F  .+  =  o F
( +g  `  M ) )
75, 6ax-mp 8 . . . . . . . . 9  |-  o F 
.+  =  o F ( +g  `  M
)
87oveqi 5871 . . . . . . . 8  |-  ( x  o F  .+  y
)  =  ( x  o F ( +g  `  M ) y )
98a1i 10 . . . . . . 7  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  o F 
.+  y )  =  ( x  o F ( +g  `  M
) y ) )
109mpt2eq3ia 5913 . . . . . 6  |-  ( x  e.  B ,  y  e.  B  |->  ( x  o F  .+  y
) )  =  ( x  e.  B , 
y  e.  B  |->  ( x  o F ( +g  `  M ) y ) )
11 eqid 2283 . . . . . 6  |-  ( x  e.  B ,  y  e.  B  |->  ( x  o.  y ) )  =  ( x  e.  B ,  y  e.  B  |->  ( x  o.  y ) )
12 eqid 2283 . . . . . 6  |-  (Scalar `  M )  =  (Scalar `  M )
13 eqid 2283 . . . . . 6  |-  ( x  e.  ( Base `  (Scalar `  M ) ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  o F ( .s `  M
) y ) )  =  ( x  e.  ( Base `  (Scalar `  M ) ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  o F ( .s `  M
) y ) )
144, 10, 11, 12, 13mendval 27491 . . . . 5  |-  ( M  e.  _V  ->  (MEndo `  M )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  o F  .+  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  o.  y
) ) >. }  u.  {
<. (Scalar `  ndx ) ,  (Scalar `  M ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  M ) ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  o F ( .s `  M
) y ) )
>. } ) )
151, 14syl5eq 2327 . . . 4  |-  ( M  e.  _V  ->  A  =  ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  o F 
.+  y ) )
>. ,  <. ( .r
`  ndx ) ,  ( x  e.  B , 
y  e.  B  |->  ( x  o.  y ) ) >. }  u.  { <. (Scalar `  ndx ) ,  (Scalar `  M ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  M ) ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  o F ( .s `  M
) y ) )
>. } ) )
1615fveq2d 5529 . . 3  |-  ( M  e.  _V  ->  ( +g  `  A )  =  ( +g  `  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  o F  .+  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  o.  y
) ) >. }  u.  {
<. (Scalar `  ndx ) ,  (Scalar `  M ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  M ) ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  o F ( .s `  M
) y ) )
>. } ) ) )
17 fvex 5539 . . . . . 6  |-  ( Base `  A )  e.  _V
182, 17eqeltri 2353 . . . . 5  |-  B  e. 
_V
1918, 18mpt2ex 6198 . . . 4  |-  ( x  e.  B ,  y  e.  B  |->  ( x  o F  .+  y
) )  e.  _V
20 eqid 2283 . . . . 5  |-  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  o F  .+  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  o.  y
) ) >. }  u.  {
<. (Scalar `  ndx ) ,  (Scalar `  M ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  M ) ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  o F ( .s `  M
) y ) )
>. } )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  o F  .+  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  o.  y
) ) >. }  u.  {
<. (Scalar `  ndx ) ,  (Scalar `  M ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  M ) ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  o F ( .s `  M
) y ) )
>. } )
2120algaddg 13279 . . . 4  |-  ( ( x  e.  B , 
y  e.  B  |->  ( x  o F  .+  y ) )  e. 
_V  ->  ( x  e.  B ,  y  e.  B  |->  ( x  o F  .+  y ) )  =  ( +g  `  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  o F 
.+  y ) )
>. ,  <. ( .r
`  ndx ) ,  ( x  e.  B , 
y  e.  B  |->  ( x  o.  y ) ) >. }  u.  { <. (Scalar `  ndx ) ,  (Scalar `  M ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  M ) ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  o F ( .s `  M
) y ) )
>. } ) ) )
2219, 21mp1i 11 . . 3  |-  ( M  e.  _V  ->  (
x  e.  B , 
y  e.  B  |->  ( x  o F  .+  y ) )  =  ( +g  `  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  o F  .+  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  ( x  o.  y
) ) >. }  u.  {
<. (Scalar `  ndx ) ,  (Scalar `  M ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  M ) ) ,  y  e.  B  |->  ( ( ( Base `  M
)  X.  { x } )  o F ( .s `  M
) y ) )
>. } ) ) )
2316, 22eqtr4d 2318 . 2  |-  ( M  e.  _V  ->  ( +g  `  A )  =  ( x  e.  B ,  y  e.  B  |->  ( x  o F 
.+  y ) ) )
24 fvprc 5519 . . . . . 6  |-  ( -.  M  e.  _V  ->  (MEndo `  M )  =  (/) )
251, 24syl5eq 2327 . . . . 5  |-  ( -.  M  e.  _V  ->  A  =  (/) )
2625fveq2d 5529 . . . 4  |-  ( -.  M  e.  _V  ->  ( +g  `  A )  =  ( +g  `  (/) ) )
27 df-plusg 13221 . . . . 5  |-  +g  = Slot  2
2827str0 13184 . . . 4  |-  (/)  =  ( +g  `  (/) )
2926, 28syl6eqr 2333 . . 3  |-  ( -.  M  e.  _V  ->  ( +g  `  A )  =  (/) )
3025fveq2d 5529 . . . . . 6  |-  ( -.  M  e.  _V  ->  (
Base `  A )  =  ( Base `  (/) ) )
31 base0 13185 . . . . . 6  |-  (/)  =  (
Base `  (/) )
3230, 2, 313eqtr4g 2340 . . . . 5  |-  ( -.  M  e.  _V  ->  B  =  (/) )
33 mpt2eq12 5908 . . . . . 6  |-  ( ( B  =  (/)  /\  B  =  (/) )  ->  (
x  e.  B , 
y  e.  B  |->  ( x  o F  .+  y ) )  =  ( x  e.  (/) ,  y  e.  (/)  |->  ( x  o F  .+  y
) ) )
3433anidms 626 . . . . 5  |-  ( B  =  (/)  ->  ( x  e.  B ,  y  e.  B  |->  ( x  o F  .+  y
) )  =  ( x  e.  (/) ,  y  e.  (/)  |->  ( x  o F  .+  y ) ) )
3532, 34syl 15 . . . 4  |-  ( -.  M  e.  _V  ->  ( x  e.  B , 
y  e.  B  |->  ( x  o F  .+  y ) )  =  ( x  e.  (/) ,  y  e.  (/)  |->  ( x  o F  .+  y
) ) )
36 mpt20 6199 . . . 4  |-  ( x  e.  (/) ,  y  e.  (/)  |->  ( x  o F  .+  y ) )  =  (/)
3735, 36syl6eq 2331 . . 3  |-  ( -.  M  e.  _V  ->  ( x  e.  B , 
y  e.  B  |->  ( x  o F  .+  y ) )  =  (/) )
3829, 37eqtr4d 2318 . 2  |-  ( -.  M  e.  _V  ->  ( +g  `  A )  =  ( x  e.  B ,  y  e.  B  |->  ( x  o F  .+  y ) ) )
3923, 38pm2.61i 156 1  |-  ( +g  `  A )  =  ( x  e.  B , 
y  e.  B  |->  ( x  o F  .+  y ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788    u. cun 3150   (/)c0 3455   {csn 3640   {cpr 3641   {ctp 3642   <.cop 3643    X. cxp 4687    o. ccom 4693   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860    o Fcof 6076   2c2 9795   ndxcnx 13145   Basecbs 13148   +g cplusg 13208   .rcmulr 13209  Scalarcsca 13211   .scvsca 13212   LMHom clmhm 15776  MEndocmend 27489
This theorem is referenced by:  mendplusg  27494
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-lmhm 15779  df-mend 27490
  Copyright terms: Public domain W3C validator