Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendrng Unicode version

Theorem mendrng 27169
Description: The module endomorphism algebra is a ring. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypothesis
Ref Expression
mendassa.a  |-  A  =  (MEndo `  M )
Assertion
Ref Expression
mendrng  |-  ( M  e.  LMod  ->  A  e. 
Ring )

Proof of Theorem mendrng
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mendassa.a . . . 4  |-  A  =  (MEndo `  M )
21mendbas 27161 . . 3  |-  ( M LMHom 
M )  =  (
Base `  A )
32a1i 11 . 2  |-  ( M  e.  LMod  ->  ( M LMHom 
M )  =  (
Base `  A )
)
4 eqidd 2388 . 2  |-  ( M  e.  LMod  ->  ( +g  `  A )  =  ( +g  `  A ) )
5 eqidd 2388 . 2  |-  ( M  e.  LMod  ->  ( .r
`  A )  =  ( .r `  A
) )
6 eqid 2387 . . . . . 6  |-  ( +g  `  M )  =  ( +g  `  M )
7 eqid 2387 . . . . . 6  |-  ( +g  `  A )  =  ( +g  `  A )
81, 2, 6, 7mendplusg 27163 . . . . 5  |-  ( ( x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M ) )  ->  ( x
( +g  `  A ) y )  =  ( x  o F ( +g  `  M ) y ) )
96lmhmplusg 16047 . . . . 5  |-  ( ( x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M ) )  ->  ( x  o F ( +g  `  M
) y )  e.  ( M LMHom  M ) )
108, 9eqeltrd 2461 . . . 4  |-  ( ( x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M ) )  ->  ( x
( +g  `  A ) y )  e.  ( M LMHom  M ) )
11103adant1 975 . . 3  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M )  /\  y  e.  ( M LMHom  M ) )  ->  ( x ( +g  `  A ) y )  e.  ( M LMHom  M ) )
12 simpr1 963 . . . . . 6  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  x  e.  ( M LMHom  M ) )
13 simpr2 964 . . . . . 6  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  y  e.  ( M LMHom  M ) )
1412, 13, 9syl2anc 643 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x  o F ( +g  `  M
) y )  e.  ( M LMHom  M ) )
15 simpr3 965 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  z  e.  ( M LMHom  M ) )
161, 2, 6, 7mendplusg 27163 . . . . 5  |-  ( ( ( x  o F ( +g  `  M
) y )  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) )  ->  ( ( x  o F ( +g  `  M ) y ) ( +g  `  A
) z )  =  ( ( x  o F ( +g  `  M
) y )  o F ( +g  `  M
) z ) )
1714, 15, 16syl2anc 643 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x  o F ( +g  `  M ) y ) ( +g  `  A ) z )  =  ( ( x  o F ( +g  `  M ) y )  o F ( +g  `  M ) z ) )
1812, 13, 8syl2anc 643 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( +g  `  A ) y )  =  ( x  o F ( +g  `  M ) y ) )
1918oveq1d 6035 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( +g  `  A
) y ) ( +g  `  A ) z )  =  ( ( x  o F ( +g  `  M
) y ) ( +g  `  A ) z ) )
206lmhmplusg 16047 . . . . . . 7  |-  ( ( y  e.  ( M LMHom 
M )  /\  z  e.  ( M LMHom  M ) )  ->  ( y  o F ( +g  `  M
) z )  e.  ( M LMHom  M ) )
2113, 15, 20syl2anc 643 . . . . . 6  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( y  o F ( +g  `  M
) z )  e.  ( M LMHom  M ) )
221, 2, 6, 7mendplusg 27163 . . . . . 6  |-  ( ( x  e.  ( M LMHom 
M )  /\  (
y  o F ( +g  `  M ) z )  e.  ( M LMHom  M ) )  ->  ( x ( +g  `  A ) ( y  o F ( +g  `  M
) z ) )  =  ( x  o F ( +g  `  M
) ( y  o F ( +g  `  M
) z ) ) )
2312, 21, 22syl2anc 643 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( +g  `  A ) ( y  o F ( +g  `  M
) z ) )  =  ( x  o F ( +g  `  M
) ( y  o F ( +g  `  M
) z ) ) )
241, 2, 6, 7mendplusg 27163 . . . . . . 7  |-  ( ( y  e.  ( M LMHom 
M )  /\  z  e.  ( M LMHom  M ) )  ->  ( y
( +g  `  A ) z )  =  ( y  o F ( +g  `  M ) z ) )
2513, 15, 24syl2anc 643 . . . . . 6  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( y
( +g  `  A ) z )  =  ( y  o F ( +g  `  M ) z ) )
2625oveq2d 6036 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( +g  `  A ) ( y ( +g  `  A ) z ) )  =  ( x ( +g  `  A
) ( y  o F ( +g  `  M
) z ) ) )
27 lmodgrp 15884 . . . . . . . 8  |-  ( M  e.  LMod  ->  M  e. 
Grp )
28 grpmnd 14744 . . . . . . . 8  |-  ( M  e.  Grp  ->  M  e.  Mnd )
2927, 28syl 16 . . . . . . 7  |-  ( M  e.  LMod  ->  M  e. 
Mnd )
3029adantr 452 . . . . . 6  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  M  e.  Mnd )
31 eqid 2387 . . . . . . . . 9  |-  ( Base `  M )  =  (
Base `  M )
3231, 31lmhmf 16037 . . . . . . . 8  |-  ( x  e.  ( M LMHom  M
)  ->  x :
( Base `  M ) --> ( Base `  M )
)
3312, 32syl 16 . . . . . . 7  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  x :
( Base `  M ) --> ( Base `  M )
)
34 fvex 5682 . . . . . . . 8  |-  ( Base `  M )  e.  _V
3534, 34elmap 6978 . . . . . . 7  |-  ( x  e.  ( ( Base `  M )  ^m  ( Base `  M ) )  <-> 
x : ( Base `  M ) --> ( Base `  M ) )
3633, 35sylibr 204 . . . . . 6  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  x  e.  ( ( Base `  M
)  ^m  ( Base `  M ) ) )
3731, 31lmhmf 16037 . . . . . . . 8  |-  ( y  e.  ( M LMHom  M
)  ->  y :
( Base `  M ) --> ( Base `  M )
)
3813, 37syl 16 . . . . . . 7  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  y :
( Base `  M ) --> ( Base `  M )
)
3934, 34elmap 6978 . . . . . . 7  |-  ( y  e.  ( ( Base `  M )  ^m  ( Base `  M ) )  <-> 
y : ( Base `  M ) --> ( Base `  M ) )
4038, 39sylibr 204 . . . . . 6  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  y  e.  ( ( Base `  M
)  ^m  ( Base `  M ) ) )
4131, 31lmhmf 16037 . . . . . . . 8  |-  ( z  e.  ( M LMHom  M
)  ->  z :
( Base `  M ) --> ( Base `  M )
)
4215, 41syl 16 . . . . . . 7  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  z :
( Base `  M ) --> ( Base `  M )
)
4334, 34elmap 6978 . . . . . . 7  |-  ( z  e.  ( ( Base `  M )  ^m  ( Base `  M ) )  <-> 
z : ( Base `  M ) --> ( Base `  M ) )
4442, 43sylibr 204 . . . . . 6  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  z  e.  ( ( Base `  M
)  ^m  ( Base `  M ) ) )
4531, 6mndvass 27116 . . . . . 6  |-  ( ( M  e.  Mnd  /\  ( x  e.  (
( Base `  M )  ^m  ( Base `  M
) )  /\  y  e.  ( ( Base `  M
)  ^m  ( Base `  M ) )  /\  z  e.  ( ( Base `  M )  ^m  ( Base `  M )
) ) )  -> 
( ( x  o F ( +g  `  M
) y )  o F ( +g  `  M
) z )  =  ( x  o F ( +g  `  M
) ( y  o F ( +g  `  M
) z ) ) )
4630, 36, 40, 44, 45syl13anc 1186 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x  o F ( +g  `  M ) y )  o F ( +g  `  M
) z )  =  ( x  o F ( +g  `  M
) ( y  o F ( +g  `  M
) z ) ) )
4723, 26, 463eqtr4d 2429 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( +g  `  A ) ( y ( +g  `  A ) z ) )  =  ( ( x  o F ( +g  `  M ) y )  o F ( +g  `  M
) z ) )
4817, 19, 473eqtr4d 2429 . . 3  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( +g  `  A
) y ) ( +g  `  A ) z )  =  ( x ( +g  `  A
) ( y ( +g  `  A ) z ) ) )
49 id 20 . . . 4  |-  ( M  e.  LMod  ->  M  e. 
LMod )
50 eqidd 2388 . . . 4  |-  ( M  e.  LMod  ->  (Scalar `  M )  =  (Scalar `  M ) )
51 eqid 2387 . . . . 5  |-  ( 0g
`  M )  =  ( 0g `  M
)
52 eqid 2387 . . . . 5  |-  (Scalar `  M )  =  (Scalar `  M )
5351, 31, 52, 520lmhm 16043 . . . 4  |-  ( ( M  e.  LMod  /\  M  e.  LMod  /\  (Scalar `  M
)  =  (Scalar `  M ) )  -> 
( ( Base `  M
)  X.  { ( 0g `  M ) } )  e.  ( M LMHom  M ) )
5449, 49, 50, 53syl3anc 1184 . . 3  |-  ( M  e.  LMod  ->  ( (
Base `  M )  X.  { ( 0g `  M ) } )  e.  ( M LMHom  M
) )
551, 2, 6, 7mendplusg 27163 . . . . 5  |-  ( ( ( ( Base `  M
)  X.  { ( 0g `  M ) } )  e.  ( M LMHom  M )  /\  x  e.  ( M LMHom  M ) )  ->  (
( ( Base `  M
)  X.  { ( 0g `  M ) } ) ( +g  `  A ) x )  =  ( ( (
Base `  M )  X.  { ( 0g `  M ) } )  o F ( +g  `  M ) x ) )
5654, 55sylan 458 . . . 4  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( (
( Base `  M )  X.  { ( 0g `  M ) } ) ( +g  `  A
) x )  =  ( ( ( Base `  M )  X.  {
( 0g `  M
) } )  o F ( +g  `  M
) x ) )
5732, 35sylibr 204 . . . . 5  |-  ( x  e.  ( M LMHom  M
)  ->  x  e.  ( ( Base `  M
)  ^m  ( Base `  M ) ) )
5831, 6, 51mndvlid 27117 . . . . 5  |-  ( ( M  e.  Mnd  /\  x  e.  ( ( Base `  M )  ^m  ( Base `  M )
) )  ->  (
( ( Base `  M
)  X.  { ( 0g `  M ) } )  o F ( +g  `  M
) x )  =  x )
5929, 57, 58syl2an 464 . . . 4  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( (
( Base `  M )  X.  { ( 0g `  M ) } )  o F ( +g  `  M ) x )  =  x )
6056, 59eqtrd 2419 . . 3  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( (
( Base `  M )  X.  { ( 0g `  M ) } ) ( +g  `  A
) x )  =  x )
61 eqid 2387 . . . . 5  |-  ( inv g `  M )  =  ( inv g `  M )
6261invlmhm 16045 . . . 4  |-  ( M  e.  LMod  ->  ( inv g `  M )  e.  ( M LMHom  M
) )
63 lmhmco 16046 . . . 4  |-  ( ( ( inv g `  M )  e.  ( M LMHom  M )  /\  x  e.  ( M LMHom  M ) )  ->  (
( inv g `  M )  o.  x
)  e.  ( M LMHom 
M ) )
6462, 63sylan 458 . . 3  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( ( inv g `  M )  o.  x )  e.  ( M LMHom  M ) )
651, 2, 6, 7mendplusg 27163 . . . . 5  |-  ( ( ( ( inv g `  M )  o.  x
)  e.  ( M LMHom 
M )  /\  x  e.  ( M LMHom  M ) )  ->  ( (
( inv g `  M )  o.  x
) ( +g  `  A
) x )  =  ( ( ( inv g `  M )  o.  x )  o F ( +g  `  M
) x ) )
6664, 65sylancom 649 . . . 4  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( (
( inv g `  M )  o.  x
) ( +g  `  A
) x )  =  ( ( ( inv g `  M )  o.  x )  o F ( +g  `  M
) x ) )
6731, 6, 61, 51grpvlinv 27119 . . . . 5  |-  ( ( M  e.  Grp  /\  x  e.  ( ( Base `  M )  ^m  ( Base `  M )
) )  ->  (
( ( inv g `  M )  o.  x
)  o F ( +g  `  M ) x )  =  ( ( Base `  M
)  X.  { ( 0g `  M ) } ) )
6827, 57, 67syl2an 464 . . . 4  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( (
( inv g `  M )  o.  x
)  o F ( +g  `  M ) x )  =  ( ( Base `  M
)  X.  { ( 0g `  M ) } ) )
6966, 68eqtrd 2419 . . 3  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( (
( inv g `  M )  o.  x
) ( +g  `  A
) x )  =  ( ( Base `  M
)  X.  { ( 0g `  M ) } ) )
703, 4, 11, 48, 54, 60, 64, 69isgrpd 14757 . 2  |-  ( M  e.  LMod  ->  A  e. 
Grp )
71 eqid 2387 . . . . 5  |-  ( .r
`  A )  =  ( .r `  A
)
721, 2, 71mendmulr 27165 . . . 4  |-  ( ( x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M ) )  ->  ( x
( .r `  A
) y )  =  ( x  o.  y
) )
73 lmhmco 16046 . . . 4  |-  ( ( x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M ) )  ->  ( x  o.  y )  e.  ( M LMHom  M ) )
7472, 73eqeltrd 2461 . . 3  |-  ( ( x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M ) )  ->  ( x
( .r `  A
) y )  e.  ( M LMHom  M ) )
75743adant1 975 . 2  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M )  /\  y  e.  ( M LMHom  M ) )  ->  ( x ( .r `  A ) y )  e.  ( M LMHom  M ) )
76 coass 5328 . . 3  |-  ( ( x  o.  y )  o.  z )  =  ( x  o.  (
y  o.  z ) )
7712, 13, 72syl2anc 643 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( .r `  A
) y )  =  ( x  o.  y
) )
7877oveq1d 6035 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( .r `  A ) y ) ( .r `  A
) z )  =  ( ( x  o.  y ) ( .r
`  A ) z ) )
7912, 13, 73syl2anc 643 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x  o.  y )  e.  ( M LMHom  M ) )
801, 2, 71mendmulr 27165 . . . . 5  |-  ( ( ( x  o.  y
)  e.  ( M LMHom 
M )  /\  z  e.  ( M LMHom  M ) )  ->  ( (
x  o.  y ) ( .r `  A
) z )  =  ( ( x  o.  y )  o.  z
) )
8179, 15, 80syl2anc 643 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x  o.  y ) ( .r `  A
) z )  =  ( ( x  o.  y )  o.  z
) )
8278, 81eqtrd 2419 . . 3  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( .r `  A ) y ) ( .r `  A
) z )  =  ( ( x  o.  y )  o.  z
) )
831, 2, 71mendmulr 27165 . . . . . 6  |-  ( ( y  e.  ( M LMHom 
M )  /\  z  e.  ( M LMHom  M ) )  ->  ( y
( .r `  A
) z )  =  ( y  o.  z
) )
8413, 15, 83syl2anc 643 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( y
( .r `  A
) z )  =  ( y  o.  z
) )
8584oveq2d 6036 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( .r `  A
) ( y ( .r `  A ) z ) )  =  ( x ( .r
`  A ) ( y  o.  z ) ) )
86 lmhmco 16046 . . . . . 6  |-  ( ( y  e.  ( M LMHom 
M )  /\  z  e.  ( M LMHom  M ) )  ->  ( y  o.  z )  e.  ( M LMHom  M ) )
8713, 15, 86syl2anc 643 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( y  o.  z )  e.  ( M LMHom  M ) )
881, 2, 71mendmulr 27165 . . . . 5  |-  ( ( x  e.  ( M LMHom 
M )  /\  (
y  o.  z )  e.  ( M LMHom  M
) )  ->  (
x ( .r `  A ) ( y  o.  z ) )  =  ( x  o.  ( y  o.  z
) ) )
8912, 87, 88syl2anc 643 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( .r `  A
) ( y  o.  z ) )  =  ( x  o.  (
y  o.  z ) ) )
9085, 89eqtrd 2419 . . 3  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( .r `  A
) ( y ( .r `  A ) z ) )  =  ( x  o.  (
y  o.  z ) ) )
9176, 82, 903eqtr4a 2445 . 2  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( .r `  A ) y ) ( .r `  A
) z )  =  ( x ( .r
`  A ) ( y ( .r `  A ) z ) ) )
921, 2, 71mendmulr 27165 . . . 4  |-  ( ( x  e.  ( M LMHom 
M )  /\  (
y  o F ( +g  `  M ) z )  e.  ( M LMHom  M ) )  ->  ( x ( .r `  A ) ( y  o F ( +g  `  M
) z ) )  =  ( x  o.  ( y  o F ( +g  `  M
) z ) ) )
9312, 21, 92syl2anc 643 . . 3  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( .r `  A
) ( y  o F ( +g  `  M
) z ) )  =  ( x  o.  ( y  o F ( +g  `  M
) z ) ) )
9425oveq2d 6036 . . 3  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( .r `  A
) ( y ( +g  `  A ) z ) )  =  ( x ( .r
`  A ) ( y  o F ( +g  `  M ) z ) ) )
95 lmhmco 16046 . . . . . 6  |-  ( ( x  e.  ( M LMHom 
M )  /\  z  e.  ( M LMHom  M ) )  ->  ( x  o.  z )  e.  ( M LMHom  M ) )
9612, 15, 95syl2anc 643 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x  o.  z )  e.  ( M LMHom  M ) )
971, 2, 6, 7mendplusg 27163 . . . . 5  |-  ( ( ( x  o.  y
)  e.  ( M LMHom 
M )  /\  (
x  o.  z )  e.  ( M LMHom  M
) )  ->  (
( x  o.  y
) ( +g  `  A
) ( x  o.  z ) )  =  ( ( x  o.  y )  o F ( +g  `  M
) ( x  o.  z ) ) )
9879, 96, 97syl2anc 643 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x  o.  y ) ( +g  `  A
) ( x  o.  z ) )  =  ( ( x  o.  y )  o F ( +g  `  M
) ( x  o.  z ) ) )
991, 2, 71mendmulr 27165 . . . . . 6  |-  ( ( x  e.  ( M LMHom 
M )  /\  z  e.  ( M LMHom  M ) )  ->  ( x
( .r `  A
) z )  =  ( x  o.  z
) )
10012, 15, 99syl2anc 643 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( .r `  A
) z )  =  ( x  o.  z
) )
10177, 100oveq12d 6038 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( .r `  A ) y ) ( +g  `  A
) ( x ( .r `  A ) z ) )  =  ( ( x  o.  y ) ( +g  `  A ) ( x  o.  z ) ) )
102 lmghm 16034 . . . . . 6  |-  ( x  e.  ( M LMHom  M
)  ->  x  e.  ( M  GrpHom  M ) )
103 ghmmhm 14943 . . . . . 6  |-  ( x  e.  ( M  GrpHom  M )  ->  x  e.  ( M MndHom  M ) )
10412, 102, 1033syl 19 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  x  e.  ( M MndHom  M ) )
10531, 6, 6mhmvlin 27121 . . . . 5  |-  ( ( x  e.  ( M MndHom  M )  /\  y  e.  ( ( Base `  M
)  ^m  ( Base `  M ) )  /\  z  e.  ( ( Base `  M )  ^m  ( Base `  M )
) )  ->  (
x  o.  ( y  o F ( +g  `  M ) z ) )  =  ( ( x  o.  y )  o F ( +g  `  M ) ( x  o.  z ) ) )
106104, 40, 44, 105syl3anc 1184 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x  o.  ( y  o F ( +g  `  M
) z ) )  =  ( ( x  o.  y )  o F ( +g  `  M
) ( x  o.  z ) ) )
10798, 101, 1063eqtr4d 2429 . . 3  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( .r `  A ) y ) ( +g  `  A
) ( x ( .r `  A ) z ) )  =  ( x  o.  (
y  o F ( +g  `  M ) z ) ) )
10893, 94, 1073eqtr4d 2429 . 2  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( .r `  A
) ( y ( +g  `  A ) z ) )  =  ( ( x ( .r `  A ) y ) ( +g  `  A ) ( x ( .r `  A
) z ) ) )
1091, 2, 71mendmulr 27165 . . . 4  |-  ( ( ( x  o F ( +g  `  M
) y )  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) )  ->  ( ( x  o F ( +g  `  M ) y ) ( .r `  A
) z )  =  ( ( x  o F ( +g  `  M
) y )  o.  z ) )
11014, 15, 109syl2anc 643 . . 3  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x  o F ( +g  `  M ) y ) ( .r
`  A ) z )  =  ( ( x  o F ( +g  `  M ) y )  o.  z
) )
11118oveq1d 6035 . . 3  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( +g  `  A
) y ) ( .r `  A ) z )  =  ( ( x  o F ( +g  `  M
) y ) ( .r `  A ) z ) )
1121, 2, 6, 7mendplusg 27163 . . . . 5  |-  ( ( ( x  o.  z
)  e.  ( M LMHom 
M )  /\  (
y  o.  z )  e.  ( M LMHom  M
) )  ->  (
( x  o.  z
) ( +g  `  A
) ( y  o.  z ) )  =  ( ( x  o.  z )  o F ( +g  `  M
) ( y  o.  z ) ) )
11396, 87, 112syl2anc 643 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x  o.  z ) ( +g  `  A
) ( y  o.  z ) )  =  ( ( x  o.  z )  o F ( +g  `  M
) ( y  o.  z ) ) )
114100, 84oveq12d 6038 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( .r `  A ) z ) ( +g  `  A
) ( y ( .r `  A ) z ) )  =  ( ( x  o.  z ) ( +g  `  A ) ( y  o.  z ) ) )
115 ffn 5531 . . . . . 6  |-  ( x : ( Base `  M
) --> ( Base `  M
)  ->  x  Fn  ( Base `  M )
)
11612, 32, 1153syl 19 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  x  Fn  ( Base `  M )
)
117 ffn 5531 . . . . . 6  |-  ( y : ( Base `  M
) --> ( Base `  M
)  ->  y  Fn  ( Base `  M )
)
11813, 37, 1173syl 19 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  y  Fn  ( Base `  M )
)
11934a1i 11 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( Base `  M )  e.  _V )
120 inidm 3493 . . . . 5  |-  ( (
Base `  M )  i^i  ( Base `  M
) )  =  (
Base `  M )
121116, 118, 42, 119, 119, 119, 120ofco 6263 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x  o F ( +g  `  M ) y )  o.  z
)  =  ( ( x  o.  z )  o F ( +g  `  M ) ( y  o.  z ) ) )
122113, 114, 1213eqtr4d 2429 . . 3  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( .r `  A ) z ) ( +g  `  A
) ( y ( .r `  A ) z ) )  =  ( ( x  o F ( +g  `  M
) y )  o.  z ) )
123110, 111, 1223eqtr4d 2429 . 2  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( +g  `  A
) y ) ( .r `  A ) z )  =  ( ( x ( .r
`  A ) z ) ( +g  `  A
) ( y ( .r `  A ) z ) ) )
12431idlmhm 16044 . 2  |-  ( M  e.  LMod  ->  (  _I  |`  ( Base `  M
) )  e.  ( M LMHom  M ) )
1251, 2, 71mendmulr 27165 . . . 4  |-  ( ( (  _I  |`  ( Base `  M ) )  e.  ( M LMHom  M
)  /\  x  e.  ( M LMHom  M ) )  ->  ( (  _I  |`  ( Base `  M
) ) ( .r
`  A ) x )  =  ( (  _I  |`  ( Base `  M ) )  o.  x ) )
126124, 125sylan 458 . . 3  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( (  _I  |`  ( Base `  M
) ) ( .r
`  A ) x )  =  ( (  _I  |`  ( Base `  M ) )  o.  x ) )
12732adantl 453 . . . 4  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  x :
( Base `  M ) --> ( Base `  M )
)
128 fcoi2 5558 . . . 4  |-  ( x : ( Base `  M
) --> ( Base `  M
)  ->  ( (  _I  |`  ( Base `  M
) )  o.  x
)  =  x )
129127, 128syl 16 . . 3  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( (  _I  |`  ( Base `  M
) )  o.  x
)  =  x )
130126, 129eqtrd 2419 . 2  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( (  _I  |`  ( Base `  M
) ) ( .r
`  A ) x )  =  x )
131 id 20 . . . 4  |-  ( x  e.  ( M LMHom  M
)  ->  x  e.  ( M LMHom  M ) )
1321, 2, 71mendmulr 27165 . . . 4  |-  ( ( x  e.  ( M LMHom 
M )  /\  (  _I  |`  ( Base `  M
) )  e.  ( M LMHom  M ) )  ->  ( x ( .r `  A ) (  _I  |`  ( Base `  M ) ) )  =  ( x  o.  (  _I  |`  ( Base `  M ) ) ) )
133131, 124, 132syl2anr 465 . . 3  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( x
( .r `  A
) (  _I  |`  ( Base `  M ) ) )  =  ( x  o.  (  _I  |`  ( Base `  M ) ) ) )
134 fcoi1 5557 . . . 4  |-  ( x : ( Base `  M
) --> ( Base `  M
)  ->  ( x  o.  (  _I  |`  ( Base `  M ) ) )  =  x )
135127, 134syl 16 . . 3  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( x  o.  (  _I  |`  ( Base `  M ) ) )  =  x )
136133, 135eqtrd 2419 . 2  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( x
( .r `  A
) (  _I  |`  ( Base `  M ) ) )  =  x )
1373, 4, 5, 70, 75, 91, 108, 123, 124, 130, 136isrngd 15625 1  |-  ( M  e.  LMod  ->  A  e. 
Ring )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   _Vcvv 2899   {csn 3757    _I cid 4434    X. cxp 4816    |` cres 4820    o. ccom 4822    Fn wfn 5389   -->wf 5390   ` cfv 5394  (class class class)co 6020    o Fcof 6242    ^m cmap 6954   Basecbs 13396   +g cplusg 13456   .rcmulr 13457  Scalarcsca 13459   0gc0g 13650   Mndcmnd 14611   Grpcgrp 14612   inv gcminusg 14613   MndHom cmhm 14663    GrpHom cghm 14930   Ringcrg 15587   LModclmod 15877   LMHom clmhm 16022  MEndocmend 27158
This theorem is referenced by:  mendlmod  27170  mendassa  27171
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-map 6956  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-n0 10154  df-z 10215  df-uz 10421  df-fz 10976  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-plusg 13469  df-mulr 13470  df-sca 13472  df-vsca 13473  df-0g 13654  df-mnd 14617  df-mhm 14665  df-grp 14739  df-minusg 14740  df-ghm 14931  df-cmn 15341  df-abl 15342  df-mgp 15576  df-rng 15590  df-ur 15592  df-lmod 15879  df-lmhm 16025  df-mend 27159
  Copyright terms: Public domain W3C validator