Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendrng Structured version   Unicode version

Theorem mendrng 27468
Description: The module endomorphism algebra is a ring. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypothesis
Ref Expression
mendassa.a  |-  A  =  (MEndo `  M )
Assertion
Ref Expression
mendrng  |-  ( M  e.  LMod  ->  A  e. 
Ring )

Proof of Theorem mendrng
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mendassa.a . . . 4  |-  A  =  (MEndo `  M )
21mendbas 27460 . . 3  |-  ( M LMHom 
M )  =  (
Base `  A )
32a1i 11 . 2  |-  ( M  e.  LMod  ->  ( M LMHom 
M )  =  (
Base `  A )
)
4 eqidd 2436 . 2  |-  ( M  e.  LMod  ->  ( +g  `  A )  =  ( +g  `  A ) )
5 eqidd 2436 . 2  |-  ( M  e.  LMod  ->  ( .r
`  A )  =  ( .r `  A
) )
6 eqid 2435 . . . . . 6  |-  ( +g  `  M )  =  ( +g  `  M )
7 eqid 2435 . . . . . 6  |-  ( +g  `  A )  =  ( +g  `  A )
81, 2, 6, 7mendplusg 27462 . . . . 5  |-  ( ( x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M ) )  ->  ( x
( +g  `  A ) y )  =  ( x  o F ( +g  `  M ) y ) )
96lmhmplusg 16112 . . . . 5  |-  ( ( x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M ) )  ->  ( x  o F ( +g  `  M
) y )  e.  ( M LMHom  M ) )
108, 9eqeltrd 2509 . . . 4  |-  ( ( x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M ) )  ->  ( x
( +g  `  A ) y )  e.  ( M LMHom  M ) )
11103adant1 975 . . 3  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M )  /\  y  e.  ( M LMHom  M ) )  ->  ( x ( +g  `  A ) y )  e.  ( M LMHom  M ) )
12 simpr1 963 . . . . . 6  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  x  e.  ( M LMHom  M ) )
13 simpr2 964 . . . . . 6  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  y  e.  ( M LMHom  M ) )
1412, 13, 9syl2anc 643 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x  o F ( +g  `  M
) y )  e.  ( M LMHom  M ) )
15 simpr3 965 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  z  e.  ( M LMHom  M ) )
161, 2, 6, 7mendplusg 27462 . . . . 5  |-  ( ( ( x  o F ( +g  `  M
) y )  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) )  ->  ( ( x  o F ( +g  `  M ) y ) ( +g  `  A
) z )  =  ( ( x  o F ( +g  `  M
) y )  o F ( +g  `  M
) z ) )
1714, 15, 16syl2anc 643 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x  o F ( +g  `  M ) y ) ( +g  `  A ) z )  =  ( ( x  o F ( +g  `  M ) y )  o F ( +g  `  M ) z ) )
1812, 13, 8syl2anc 643 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( +g  `  A ) y )  =  ( x  o F ( +g  `  M ) y ) )
1918oveq1d 6088 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( +g  `  A
) y ) ( +g  `  A ) z )  =  ( ( x  o F ( +g  `  M
) y ) ( +g  `  A ) z ) )
206lmhmplusg 16112 . . . . . . 7  |-  ( ( y  e.  ( M LMHom 
M )  /\  z  e.  ( M LMHom  M ) )  ->  ( y  o F ( +g  `  M
) z )  e.  ( M LMHom  M ) )
2113, 15, 20syl2anc 643 . . . . . 6  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( y  o F ( +g  `  M
) z )  e.  ( M LMHom  M ) )
221, 2, 6, 7mendplusg 27462 . . . . . 6  |-  ( ( x  e.  ( M LMHom 
M )  /\  (
y  o F ( +g  `  M ) z )  e.  ( M LMHom  M ) )  ->  ( x ( +g  `  A ) ( y  o F ( +g  `  M
) z ) )  =  ( x  o F ( +g  `  M
) ( y  o F ( +g  `  M
) z ) ) )
2312, 21, 22syl2anc 643 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( +g  `  A ) ( y  o F ( +g  `  M
) z ) )  =  ( x  o F ( +g  `  M
) ( y  o F ( +g  `  M
) z ) ) )
241, 2, 6, 7mendplusg 27462 . . . . . . 7  |-  ( ( y  e.  ( M LMHom 
M )  /\  z  e.  ( M LMHom  M ) )  ->  ( y
( +g  `  A ) z )  =  ( y  o F ( +g  `  M ) z ) )
2513, 15, 24syl2anc 643 . . . . . 6  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( y
( +g  `  A ) z )  =  ( y  o F ( +g  `  M ) z ) )
2625oveq2d 6089 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( +g  `  A ) ( y ( +g  `  A ) z ) )  =  ( x ( +g  `  A
) ( y  o F ( +g  `  M
) z ) ) )
27 lmodgrp 15949 . . . . . . . 8  |-  ( M  e.  LMod  ->  M  e. 
Grp )
28 grpmnd 14809 . . . . . . . 8  |-  ( M  e.  Grp  ->  M  e.  Mnd )
2927, 28syl 16 . . . . . . 7  |-  ( M  e.  LMod  ->  M  e. 
Mnd )
3029adantr 452 . . . . . 6  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  M  e.  Mnd )
31 eqid 2435 . . . . . . . . 9  |-  ( Base `  M )  =  (
Base `  M )
3231, 31lmhmf 16102 . . . . . . . 8  |-  ( x  e.  ( M LMHom  M
)  ->  x :
( Base `  M ) --> ( Base `  M )
)
3312, 32syl 16 . . . . . . 7  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  x :
( Base `  M ) --> ( Base `  M )
)
34 fvex 5734 . . . . . . . 8  |-  ( Base `  M )  e.  _V
3534, 34elmap 7034 . . . . . . 7  |-  ( x  e.  ( ( Base `  M )  ^m  ( Base `  M ) )  <-> 
x : ( Base `  M ) --> ( Base `  M ) )
3633, 35sylibr 204 . . . . . 6  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  x  e.  ( ( Base `  M
)  ^m  ( Base `  M ) ) )
3731, 31lmhmf 16102 . . . . . . . 8  |-  ( y  e.  ( M LMHom  M
)  ->  y :
( Base `  M ) --> ( Base `  M )
)
3813, 37syl 16 . . . . . . 7  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  y :
( Base `  M ) --> ( Base `  M )
)
3934, 34elmap 7034 . . . . . . 7  |-  ( y  e.  ( ( Base `  M )  ^m  ( Base `  M ) )  <-> 
y : ( Base `  M ) --> ( Base `  M ) )
4038, 39sylibr 204 . . . . . 6  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  y  e.  ( ( Base `  M
)  ^m  ( Base `  M ) ) )
4131, 31lmhmf 16102 . . . . . . . 8  |-  ( z  e.  ( M LMHom  M
)  ->  z :
( Base `  M ) --> ( Base `  M )
)
4215, 41syl 16 . . . . . . 7  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  z :
( Base `  M ) --> ( Base `  M )
)
4334, 34elmap 7034 . . . . . . 7  |-  ( z  e.  ( ( Base `  M )  ^m  ( Base `  M ) )  <-> 
z : ( Base `  M ) --> ( Base `  M ) )
4442, 43sylibr 204 . . . . . 6  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  z  e.  ( ( Base `  M
)  ^m  ( Base `  M ) ) )
4531, 6mndvass 27415 . . . . . 6  |-  ( ( M  e.  Mnd  /\  ( x  e.  (
( Base `  M )  ^m  ( Base `  M
) )  /\  y  e.  ( ( Base `  M
)  ^m  ( Base `  M ) )  /\  z  e.  ( ( Base `  M )  ^m  ( Base `  M )
) ) )  -> 
( ( x  o F ( +g  `  M
) y )  o F ( +g  `  M
) z )  =  ( x  o F ( +g  `  M
) ( y  o F ( +g  `  M
) z ) ) )
4630, 36, 40, 44, 45syl13anc 1186 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x  o F ( +g  `  M ) y )  o F ( +g  `  M
) z )  =  ( x  o F ( +g  `  M
) ( y  o F ( +g  `  M
) z ) ) )
4723, 26, 463eqtr4d 2477 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( +g  `  A ) ( y ( +g  `  A ) z ) )  =  ( ( x  o F ( +g  `  M ) y )  o F ( +g  `  M
) z ) )
4817, 19, 473eqtr4d 2477 . . 3  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( +g  `  A
) y ) ( +g  `  A ) z )  =  ( x ( +g  `  A
) ( y ( +g  `  A ) z ) ) )
49 id 20 . . . 4  |-  ( M  e.  LMod  ->  M  e. 
LMod )
50 eqidd 2436 . . . 4  |-  ( M  e.  LMod  ->  (Scalar `  M )  =  (Scalar `  M ) )
51 eqid 2435 . . . . 5  |-  ( 0g
`  M )  =  ( 0g `  M
)
52 eqid 2435 . . . . 5  |-  (Scalar `  M )  =  (Scalar `  M )
5351, 31, 52, 520lmhm 16108 . . . 4  |-  ( ( M  e.  LMod  /\  M  e.  LMod  /\  (Scalar `  M
)  =  (Scalar `  M ) )  -> 
( ( Base `  M
)  X.  { ( 0g `  M ) } )  e.  ( M LMHom  M ) )
5449, 49, 50, 53syl3anc 1184 . . 3  |-  ( M  e.  LMod  ->  ( (
Base `  M )  X.  { ( 0g `  M ) } )  e.  ( M LMHom  M
) )
551, 2, 6, 7mendplusg 27462 . . . . 5  |-  ( ( ( ( Base `  M
)  X.  { ( 0g `  M ) } )  e.  ( M LMHom  M )  /\  x  e.  ( M LMHom  M ) )  ->  (
( ( Base `  M
)  X.  { ( 0g `  M ) } ) ( +g  `  A ) x )  =  ( ( (
Base `  M )  X.  { ( 0g `  M ) } )  o F ( +g  `  M ) x ) )
5654, 55sylan 458 . . . 4  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( (
( Base `  M )  X.  { ( 0g `  M ) } ) ( +g  `  A
) x )  =  ( ( ( Base `  M )  X.  {
( 0g `  M
) } )  o F ( +g  `  M
) x ) )
5732, 35sylibr 204 . . . . 5  |-  ( x  e.  ( M LMHom  M
)  ->  x  e.  ( ( Base `  M
)  ^m  ( Base `  M ) ) )
5831, 6, 51mndvlid 27416 . . . . 5  |-  ( ( M  e.  Mnd  /\  x  e.  ( ( Base `  M )  ^m  ( Base `  M )
) )  ->  (
( ( Base `  M
)  X.  { ( 0g `  M ) } )  o F ( +g  `  M
) x )  =  x )
5929, 57, 58syl2an 464 . . . 4  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( (
( Base `  M )  X.  { ( 0g `  M ) } )  o F ( +g  `  M ) x )  =  x )
6056, 59eqtrd 2467 . . 3  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( (
( Base `  M )  X.  { ( 0g `  M ) } ) ( +g  `  A
) x )  =  x )
61 eqid 2435 . . . . 5  |-  ( inv g `  M )  =  ( inv g `  M )
6261invlmhm 16110 . . . 4  |-  ( M  e.  LMod  ->  ( inv g `  M )  e.  ( M LMHom  M
) )
63 lmhmco 16111 . . . 4  |-  ( ( ( inv g `  M )  e.  ( M LMHom  M )  /\  x  e.  ( M LMHom  M ) )  ->  (
( inv g `  M )  o.  x
)  e.  ( M LMHom 
M ) )
6462, 63sylan 458 . . 3  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( ( inv g `  M )  o.  x )  e.  ( M LMHom  M ) )
651, 2, 6, 7mendplusg 27462 . . . . 5  |-  ( ( ( ( inv g `  M )  o.  x
)  e.  ( M LMHom 
M )  /\  x  e.  ( M LMHom  M ) )  ->  ( (
( inv g `  M )  o.  x
) ( +g  `  A
) x )  =  ( ( ( inv g `  M )  o.  x )  o F ( +g  `  M
) x ) )
6664, 65sylancom 649 . . . 4  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( (
( inv g `  M )  o.  x
) ( +g  `  A
) x )  =  ( ( ( inv g `  M )  o.  x )  o F ( +g  `  M
) x ) )
6731, 6, 61, 51grpvlinv 27418 . . . . 5  |-  ( ( M  e.  Grp  /\  x  e.  ( ( Base `  M )  ^m  ( Base `  M )
) )  ->  (
( ( inv g `  M )  o.  x
)  o F ( +g  `  M ) x )  =  ( ( Base `  M
)  X.  { ( 0g `  M ) } ) )
6827, 57, 67syl2an 464 . . . 4  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( (
( inv g `  M )  o.  x
)  o F ( +g  `  M ) x )  =  ( ( Base `  M
)  X.  { ( 0g `  M ) } ) )
6966, 68eqtrd 2467 . . 3  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( (
( inv g `  M )  o.  x
) ( +g  `  A
) x )  =  ( ( Base `  M
)  X.  { ( 0g `  M ) } ) )
703, 4, 11, 48, 54, 60, 64, 69isgrpd 14822 . 2  |-  ( M  e.  LMod  ->  A  e. 
Grp )
71 eqid 2435 . . . . 5  |-  ( .r
`  A )  =  ( .r `  A
)
721, 2, 71mendmulr 27464 . . . 4  |-  ( ( x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M ) )  ->  ( x
( .r `  A
) y )  =  ( x  o.  y
) )
73 lmhmco 16111 . . . 4  |-  ( ( x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M ) )  ->  ( x  o.  y )  e.  ( M LMHom  M ) )
7472, 73eqeltrd 2509 . . 3  |-  ( ( x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M ) )  ->  ( x
( .r `  A
) y )  e.  ( M LMHom  M ) )
75743adant1 975 . 2  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M )  /\  y  e.  ( M LMHom  M ) )  ->  ( x ( .r `  A ) y )  e.  ( M LMHom  M ) )
76 coass 5380 . . 3  |-  ( ( x  o.  y )  o.  z )  =  ( x  o.  (
y  o.  z ) )
7712, 13, 72syl2anc 643 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( .r `  A
) y )  =  ( x  o.  y
) )
7877oveq1d 6088 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( .r `  A ) y ) ( .r `  A
) z )  =  ( ( x  o.  y ) ( .r
`  A ) z ) )
7912, 13, 73syl2anc 643 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x  o.  y )  e.  ( M LMHom  M ) )
801, 2, 71mendmulr 27464 . . . . 5  |-  ( ( ( x  o.  y
)  e.  ( M LMHom 
M )  /\  z  e.  ( M LMHom  M ) )  ->  ( (
x  o.  y ) ( .r `  A
) z )  =  ( ( x  o.  y )  o.  z
) )
8179, 15, 80syl2anc 643 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x  o.  y ) ( .r `  A
) z )  =  ( ( x  o.  y )  o.  z
) )
8278, 81eqtrd 2467 . . 3  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( .r `  A ) y ) ( .r `  A
) z )  =  ( ( x  o.  y )  o.  z
) )
831, 2, 71mendmulr 27464 . . . . . 6  |-  ( ( y  e.  ( M LMHom 
M )  /\  z  e.  ( M LMHom  M ) )  ->  ( y
( .r `  A
) z )  =  ( y  o.  z
) )
8413, 15, 83syl2anc 643 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( y
( .r `  A
) z )  =  ( y  o.  z
) )
8584oveq2d 6089 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( .r `  A
) ( y ( .r `  A ) z ) )  =  ( x ( .r
`  A ) ( y  o.  z ) ) )
86 lmhmco 16111 . . . . . 6  |-  ( ( y  e.  ( M LMHom 
M )  /\  z  e.  ( M LMHom  M ) )  ->  ( y  o.  z )  e.  ( M LMHom  M ) )
8713, 15, 86syl2anc 643 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( y  o.  z )  e.  ( M LMHom  M ) )
881, 2, 71mendmulr 27464 . . . . 5  |-  ( ( x  e.  ( M LMHom 
M )  /\  (
y  o.  z )  e.  ( M LMHom  M
) )  ->  (
x ( .r `  A ) ( y  o.  z ) )  =  ( x  o.  ( y  o.  z
) ) )
8912, 87, 88syl2anc 643 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( .r `  A
) ( y  o.  z ) )  =  ( x  o.  (
y  o.  z ) ) )
9085, 89eqtrd 2467 . . 3  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( .r `  A
) ( y ( .r `  A ) z ) )  =  ( x  o.  (
y  o.  z ) ) )
9176, 82, 903eqtr4a 2493 . 2  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( .r `  A ) y ) ( .r `  A
) z )  =  ( x ( .r
`  A ) ( y ( .r `  A ) z ) ) )
921, 2, 71mendmulr 27464 . . . 4  |-  ( ( x  e.  ( M LMHom 
M )  /\  (
y  o F ( +g  `  M ) z )  e.  ( M LMHom  M ) )  ->  ( x ( .r `  A ) ( y  o F ( +g  `  M
) z ) )  =  ( x  o.  ( y  o F ( +g  `  M
) z ) ) )
9312, 21, 92syl2anc 643 . . 3  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( .r `  A
) ( y  o F ( +g  `  M
) z ) )  =  ( x  o.  ( y  o F ( +g  `  M
) z ) ) )
9425oveq2d 6089 . . 3  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( .r `  A
) ( y ( +g  `  A ) z ) )  =  ( x ( .r
`  A ) ( y  o F ( +g  `  M ) z ) ) )
95 lmhmco 16111 . . . . . 6  |-  ( ( x  e.  ( M LMHom 
M )  /\  z  e.  ( M LMHom  M ) )  ->  ( x  o.  z )  e.  ( M LMHom  M ) )
9612, 15, 95syl2anc 643 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x  o.  z )  e.  ( M LMHom  M ) )
971, 2, 6, 7mendplusg 27462 . . . . 5  |-  ( ( ( x  o.  y
)  e.  ( M LMHom 
M )  /\  (
x  o.  z )  e.  ( M LMHom  M
) )  ->  (
( x  o.  y
) ( +g  `  A
) ( x  o.  z ) )  =  ( ( x  o.  y )  o F ( +g  `  M
) ( x  o.  z ) ) )
9879, 96, 97syl2anc 643 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x  o.  y ) ( +g  `  A
) ( x  o.  z ) )  =  ( ( x  o.  y )  o F ( +g  `  M
) ( x  o.  z ) ) )
991, 2, 71mendmulr 27464 . . . . . 6  |-  ( ( x  e.  ( M LMHom 
M )  /\  z  e.  ( M LMHom  M ) )  ->  ( x
( .r `  A
) z )  =  ( x  o.  z
) )
10012, 15, 99syl2anc 643 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( .r `  A
) z )  =  ( x  o.  z
) )
10177, 100oveq12d 6091 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( .r `  A ) y ) ( +g  `  A
) ( x ( .r `  A ) z ) )  =  ( ( x  o.  y ) ( +g  `  A ) ( x  o.  z ) ) )
102 lmghm 16099 . . . . . 6  |-  ( x  e.  ( M LMHom  M
)  ->  x  e.  ( M  GrpHom  M ) )
103 ghmmhm 15008 . . . . . 6  |-  ( x  e.  ( M  GrpHom  M )  ->  x  e.  ( M MndHom  M ) )
10412, 102, 1033syl 19 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  x  e.  ( M MndHom  M ) )
10531, 6, 6mhmvlin 27420 . . . . 5  |-  ( ( x  e.  ( M MndHom  M )  /\  y  e.  ( ( Base `  M
)  ^m  ( Base `  M ) )  /\  z  e.  ( ( Base `  M )  ^m  ( Base `  M )
) )  ->  (
x  o.  ( y  o F ( +g  `  M ) z ) )  =  ( ( x  o.  y )  o F ( +g  `  M ) ( x  o.  z ) ) )
106104, 40, 44, 105syl3anc 1184 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x  o.  ( y  o F ( +g  `  M
) z ) )  =  ( ( x  o.  y )  o F ( +g  `  M
) ( x  o.  z ) ) )
10798, 101, 1063eqtr4d 2477 . . 3  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( .r `  A ) y ) ( +g  `  A
) ( x ( .r `  A ) z ) )  =  ( x  o.  (
y  o F ( +g  `  M ) z ) ) )
10893, 94, 1073eqtr4d 2477 . 2  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( x
( .r `  A
) ( y ( +g  `  A ) z ) )  =  ( ( x ( .r `  A ) y ) ( +g  `  A ) ( x ( .r `  A
) z ) ) )
1091, 2, 71mendmulr 27464 . . . 4  |-  ( ( ( x  o F ( +g  `  M
) y )  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) )  ->  ( ( x  o F ( +g  `  M ) y ) ( .r `  A
) z )  =  ( ( x  o F ( +g  `  M
) y )  o.  z ) )
11014, 15, 109syl2anc 643 . . 3  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x  o F ( +g  `  M ) y ) ( .r
`  A ) z )  =  ( ( x  o F ( +g  `  M ) y )  o.  z
) )
11118oveq1d 6088 . . 3  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( +g  `  A
) y ) ( .r `  A ) z )  =  ( ( x  o F ( +g  `  M
) y ) ( .r `  A ) z ) )
1121, 2, 6, 7mendplusg 27462 . . . . 5  |-  ( ( ( x  o.  z
)  e.  ( M LMHom 
M )  /\  (
y  o.  z )  e.  ( M LMHom  M
) )  ->  (
( x  o.  z
) ( +g  `  A
) ( y  o.  z ) )  =  ( ( x  o.  z )  o F ( +g  `  M
) ( y  o.  z ) ) )
11396, 87, 112syl2anc 643 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x  o.  z ) ( +g  `  A
) ( y  o.  z ) )  =  ( ( x  o.  z )  o F ( +g  `  M
) ( y  o.  z ) ) )
114100, 84oveq12d 6091 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( .r `  A ) z ) ( +g  `  A
) ( y ( .r `  A ) z ) )  =  ( ( x  o.  z ) ( +g  `  A ) ( y  o.  z ) ) )
115 ffn 5583 . . . . . 6  |-  ( x : ( Base `  M
) --> ( Base `  M
)  ->  x  Fn  ( Base `  M )
)
11612, 32, 1153syl 19 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  x  Fn  ( Base `  M )
)
117 ffn 5583 . . . . . 6  |-  ( y : ( Base `  M
) --> ( Base `  M
)  ->  y  Fn  ( Base `  M )
)
11813, 37, 1173syl 19 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  y  Fn  ( Base `  M )
)
11934a1i 11 . . . . 5  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( Base `  M )  e.  _V )
120 inidm 3542 . . . . 5  |-  ( (
Base `  M )  i^i  ( Base `  M
) )  =  (
Base `  M )
121116, 118, 42, 119, 119, 119, 120ofco 6316 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x  o F ( +g  `  M ) y )  o.  z
)  =  ( ( x  o.  z )  o F ( +g  `  M ) ( y  o.  z ) ) )
122113, 114, 1213eqtr4d 2477 . . 3  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( .r `  A ) z ) ( +g  `  A
) ( y ( .r `  A ) z ) )  =  ( ( x  o F ( +g  `  M
) y )  o.  z ) )
123110, 111, 1223eqtr4d 2477 . 2  |-  ( ( M  e.  LMod  /\  (
x  e.  ( M LMHom 
M )  /\  y  e.  ( M LMHom  M )  /\  z  e.  ( M LMHom  M ) ) )  ->  ( (
x ( +g  `  A
) y ) ( .r `  A ) z )  =  ( ( x ( .r
`  A ) z ) ( +g  `  A
) ( y ( .r `  A ) z ) ) )
12431idlmhm 16109 . 2  |-  ( M  e.  LMod  ->  (  _I  |`  ( Base `  M
) )  e.  ( M LMHom  M ) )
1251, 2, 71mendmulr 27464 . . . 4  |-  ( ( (  _I  |`  ( Base `  M ) )  e.  ( M LMHom  M
)  /\  x  e.  ( M LMHom  M ) )  ->  ( (  _I  |`  ( Base `  M
) ) ( .r
`  A ) x )  =  ( (  _I  |`  ( Base `  M ) )  o.  x ) )
126124, 125sylan 458 . . 3  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( (  _I  |`  ( Base `  M
) ) ( .r
`  A ) x )  =  ( (  _I  |`  ( Base `  M ) )  o.  x ) )
12732adantl 453 . . . 4  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  x :
( Base `  M ) --> ( Base `  M )
)
128 fcoi2 5610 . . . 4  |-  ( x : ( Base `  M
) --> ( Base `  M
)  ->  ( (  _I  |`  ( Base `  M
) )  o.  x
)  =  x )
129127, 128syl 16 . . 3  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( (  _I  |`  ( Base `  M
) )  o.  x
)  =  x )
130126, 129eqtrd 2467 . 2  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( (  _I  |`  ( Base `  M
) ) ( .r
`  A ) x )  =  x )
131 id 20 . . . 4  |-  ( x  e.  ( M LMHom  M
)  ->  x  e.  ( M LMHom  M ) )
1321, 2, 71mendmulr 27464 . . . 4  |-  ( ( x  e.  ( M LMHom 
M )  /\  (  _I  |`  ( Base `  M
) )  e.  ( M LMHom  M ) )  ->  ( x ( .r `  A ) (  _I  |`  ( Base `  M ) ) )  =  ( x  o.  (  _I  |`  ( Base `  M ) ) ) )
133131, 124, 132syl2anr 465 . . 3  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( x
( .r `  A
) (  _I  |`  ( Base `  M ) ) )  =  ( x  o.  (  _I  |`  ( Base `  M ) ) ) )
134 fcoi1 5609 . . . 4  |-  ( x : ( Base `  M
) --> ( Base `  M
)  ->  ( x  o.  (  _I  |`  ( Base `  M ) ) )  =  x )
135127, 134syl 16 . . 3  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( x  o.  (  _I  |`  ( Base `  M ) ) )  =  x )
136133, 135eqtrd 2467 . 2  |-  ( ( M  e.  LMod  /\  x  e.  ( M LMHom  M ) )  ->  ( x
( .r `  A
) (  _I  |`  ( Base `  M ) ) )  =  x )
1373, 4, 5, 70, 75, 91, 108, 123, 124, 130, 136isrngd 15690 1  |-  ( M  e.  LMod  ->  A  e. 
Ring )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   _Vcvv 2948   {csn 3806    _I cid 4485    X. cxp 4868    |` cres 4872    o. ccom 4874    Fn wfn 5441   -->wf 5442   ` cfv 5446  (class class class)co 6073    o Fcof 6295    ^m cmap 7010   Basecbs 13461   +g cplusg 13521   .rcmulr 13522  Scalarcsca 13524   0gc0g 13715   Mndcmnd 14676   Grpcgrp 14677   inv gcminusg 14678   MndHom cmhm 14728    GrpHom cghm 14995   Ringcrg 15652   LModclmod 15942   LMHom clmhm 16087  MEndocmend 27457
This theorem is referenced by:  mendlmod  27469  mendassa  27470
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-plusg 13534  df-mulr 13535  df-sca 13537  df-vsca 13538  df-0g 13719  df-mnd 14682  df-mhm 14730  df-grp 14804  df-minusg 14805  df-ghm 14996  df-cmn 15406  df-abl 15407  df-mgp 15641  df-rng 15655  df-ur 15657  df-lmod 15944  df-lmhm 16090  df-mend 27458
  Copyright terms: Public domain W3C validator