Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  merco1lem11 Structured version   Unicode version

Theorem merco1lem11 1502
 Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1488. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
merco1lem11

Proof of Theorem merco1lem11
StepHypRef Expression
1 merco1lem5 1495 . . . . . 6
2 merco1lem3 1493 . . . . . 6
31, 2ax-mp 5 . . . . 5
4 merco1lem4 1494 . . . . 5
53, 4ax-mp 5 . . . 4
6 merco1lem5 1495 . . . 4
75, 6ax-mp 5 . . 3
8 merco1lem4 1494 . . 3
97, 8ax-mp 5 . 2
10 merco1 1488 . . 3
11 merco1lem2 1492 . . 3
1210, 11ax-mp 5 . 2
139, 12ax-mp 5 1
 Colors of variables: wff set class Syntax hints:   wi 4   wfal 1327 This theorem is referenced by:  merco1lem12  1503  merco1lem16  1507  merco1lem17  1508 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 179  df-tru 1329  df-fal 1330
 Copyright terms: Public domain W3C validator