Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  merco1lem18 Structured version   Unicode version

Theorem merco1lem18 1509
 Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1488. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
merco1lem18

Proof of Theorem merco1lem18
StepHypRef Expression
1 merco1 1488 . . . 4
2 merco1lem17 1508 . . . 4
31, 2ax-mp 8 . . 3
4 merco1lem17 1508 . . 3
53, 4ax-mp 8 . 2
6 merco1lem5 1495 . . . . . . 7
7 merco1lem3 1493 . . . . . . 7
86, 7ax-mp 8 . . . . . 6
9 merco1lem5 1495 . . . . . 6
108, 9ax-mp 8 . . . . 5
11 merco1lem4 1494 . . . . 5
1210, 11ax-mp 8 . . . 4
13 merco1 1488 . . . . 5
14 merco1lem2 1492 . . . . 5
1513, 14ax-mp 8 . . . 4
1612, 15ax-mp 8 . . 3
17 merco1lem9 1500 . . 3
1816, 17ax-mp 8 . 2
195, 18ax-mp 8 1
 Colors of variables: wff set class Syntax hints:   wi 4   wfal 1327 This theorem is referenced by:  retbwax1  1510 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8 This theorem depends on definitions:  df-bi 179  df-tru 1329  df-fal 1330
 Copyright terms: Public domain W3C validator