Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  merlem13 Structured version   Unicode version

Theorem merlem13 1429
 Description: Step 35 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
merlem13

Proof of Theorem merlem13
StepHypRef Expression
1 merlem12 1428 . . . . 5
2 merlem12 1428 . . . . . . . 8
3 merlem5 1421 . . . . . . . 8
42, 3ax-mp 5 . . . . . . 7
5 merlem6 1422 . . . . . . 7
64, 5ax-mp 5 . . . . . 6
7 ax-meredith 1416 . . . . . 6
86, 7ax-mp 5 . . . . 5
91, 8ax-mp 5 . . . 4
10 merlem6 1422 . . . 4
119, 10ax-mp 5 . . 3
12 merlem11 1427 . . 3
1311, 12ax-mp 5 . 2
14 ax-meredith 1416 . 2
1513, 14ax-mp 5 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4 This theorem is referenced by:  luk-1  1430 This theorem was proved from axioms:  ax-mp 5  ax-meredith 1416
 Copyright terms: Public domain W3C validator