MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  merlem5 Unicode version

Theorem merlem5 1401
Description: Step 11 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
merlem5  |-  ( (
ph  ->  ps )  -> 
( -.  -.  ph  ->  ps ) )

Proof of Theorem merlem5
StepHypRef Expression
1 ax-meredith 1396 . 2  |-  ( ( ( ( ( ps 
->  ps )  ->  ( -.  ps  ->  -.  ps )
)  ->  ps )  ->  ps )  ->  (
( ps  ->  ps )  ->  ( ps  ->  ps ) ) )
2 ax-meredith 1396 . . 3  |-  ( ( ( ( ( ps 
->  ps )  ->  ( -.  ps  ->  -.  -.  -.  ph ) )  ->  ps )  ->  ph )  ->  (
( ph  ->  ps )  ->  ( -.  -.  ph  ->  ps ) ) )
3 merlem1 1397 . . . . 5  |-  ( ( ( ( ph  ->  ps )  ->  ( -.  -.  ph  ->  ps )
)  ->  -.  (
( ( ( ( ps  ->  ps )  ->  ( -.  ps  ->  -. 
ps ) )  ->  ps )  ->  ps )  ->  ( ( ps  ->  ps )  ->  ( ps  ->  ps ) ) ) )  ->  ( -.  ph 
->  -.  ( ( ( ( ( ps  ->  ps )  ->  ( -.  ps  ->  -.  ps )
)  ->  ps )  ->  ps )  ->  (
( ps  ->  ps )  ->  ( ps  ->  ps ) ) ) ) )
4 merlem4 1400 . . . . 5  |-  ( ( ( ( ( ph  ->  ps )  ->  ( -.  -.  ph  ->  ps )
)  ->  -.  (
( ( ( ( ps  ->  ps )  ->  ( -.  ps  ->  -. 
ps ) )  ->  ps )  ->  ps )  ->  ( ( ps  ->  ps )  ->  ( ps  ->  ps ) ) ) )  ->  ( -.  ph 
->  -.  ( ( ( ( ( ps  ->  ps )  ->  ( -.  ps  ->  -.  ps )
)  ->  ps )  ->  ps )  ->  (
( ps  ->  ps )  ->  ( ps  ->  ps ) ) ) ) )  ->  ( (
( ( ( (
ph  ->  ps )  -> 
( -.  -.  ph  ->  ps ) )  ->  -.  ( ( ( ( ( ps  ->  ps )  ->  ( -.  ps  ->  -.  ps ) )  ->  ps )  ->  ps )  ->  ( ( ps  ->  ps )  ->  ( ps  ->  ps ) ) ) )  ->  ( -.  ph  ->  -.  ( ( ( ( ( ps  ->  ps )  ->  ( -.  ps  ->  -.  ps )
)  ->  ps )  ->  ps )  ->  (
( ps  ->  ps )  ->  ( ps  ->  ps ) ) ) ) )  ->  ph )  -> 
( ( ( ( ps  ->  ps )  ->  ( -.  ps  ->  -. 
-.  -.  ph ) )  ->  ps )  ->  ph ) ) )
53, 4ax-mp 8 . . . 4  |-  ( ( ( ( ( (
ph  ->  ps )  -> 
( -.  -.  ph  ->  ps ) )  ->  -.  ( ( ( ( ( ps  ->  ps )  ->  ( -.  ps  ->  -.  ps ) )  ->  ps )  ->  ps )  ->  ( ( ps  ->  ps )  ->  ( ps  ->  ps ) ) ) )  ->  ( -.  ph  ->  -.  ( ( ( ( ( ps  ->  ps )  ->  ( -.  ps  ->  -.  ps )
)  ->  ps )  ->  ps )  ->  (
( ps  ->  ps )  ->  ( ps  ->  ps ) ) ) ) )  ->  ph )  -> 
( ( ( ( ps  ->  ps )  ->  ( -.  ps  ->  -. 
-.  -.  ph ) )  ->  ps )  ->  ph ) )
6 ax-meredith 1396 . . . 4  |-  ( ( ( ( ( ( ( ph  ->  ps )  ->  ( -.  -.  ph 
->  ps ) )  ->  -.  ( ( ( ( ( ps  ->  ps )  ->  ( -.  ps  ->  -.  ps ) )  ->  ps )  ->  ps )  ->  ( ( ps  ->  ps )  ->  ( ps  ->  ps ) ) ) )  ->  ( -.  ph  ->  -.  ( ( ( ( ( ps  ->  ps )  ->  ( -.  ps  ->  -.  ps )
)  ->  ps )  ->  ps )  ->  (
( ps  ->  ps )  ->  ( ps  ->  ps ) ) ) ) )  ->  ph )  -> 
( ( ( ( ps  ->  ps )  ->  ( -.  ps  ->  -. 
-.  -.  ph ) )  ->  ps )  ->  ph ) )  ->  (
( ( ( ( ( ps  ->  ps )  ->  ( -.  ps  ->  -.  -.  -.  ph ) )  ->  ps )  ->  ph )  ->  (
( ph  ->  ps )  ->  ( -.  -.  ph  ->  ps ) ) )  ->  ( ( ( ( ( ( ps 
->  ps )  ->  ( -.  ps  ->  -.  ps )
)  ->  ps )  ->  ps )  ->  (
( ps  ->  ps )  ->  ( ps  ->  ps ) ) )  -> 
( ( ph  ->  ps )  ->  ( -.  -.  ph  ->  ps )
) ) ) )
75, 6ax-mp 8 . . 3  |-  ( ( ( ( ( ( ps  ->  ps )  ->  ( -.  ps  ->  -. 
-.  -.  ph ) )  ->  ps )  ->  ph )  ->  ( (
ph  ->  ps )  -> 
( -.  -.  ph  ->  ps ) ) )  ->  ( ( ( ( ( ( ps 
->  ps )  ->  ( -.  ps  ->  -.  ps )
)  ->  ps )  ->  ps )  ->  (
( ps  ->  ps )  ->  ( ps  ->  ps ) ) )  -> 
( ( ph  ->  ps )  ->  ( -.  -.  ph  ->  ps )
) ) )
82, 7ax-mp 8 . 2  |-  ( ( ( ( ( ( ps  ->  ps )  ->  ( -.  ps  ->  -. 
ps ) )  ->  ps )  ->  ps )  ->  ( ( ps  ->  ps )  ->  ( ps  ->  ps ) ) )  ->  ( ( ph  ->  ps )  ->  ( -.  -.  ph  ->  ps )
) )
91, 8ax-mp 8 1  |-  ( (
ph  ->  ps )  -> 
( -.  -.  ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4
This theorem is referenced by:  merlem12  1408  merlem13  1409  luk-2  1411
This theorem was proved from axioms:  ax-mp 8  ax-meredith 1396
  Copyright terms: Public domain W3C validator