MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mertens Unicode version

Theorem mertens 12358
Description: Mertens' thoerem. If  A (
j ) is an absolutely convergent series and  B ( k ) is convergent, then  ( sum_ j  e.  NN0 A ( j )  x.  sum_ k  e.  NN0 B ( k ) )  =  sum_ k  e. 
NN0 sum_ j  e.  ( 0 ... k ) ( A ( j )  x.  B ( k  -  j ) ) (and this latter series is convergent). This latter sum is commonly known as the Cauchy product of the sequences. The proof follows the outline at http://en.wikipedia.org/wiki/Cauchy_product#Proof_of_Mertens.27_theorem. (Contributed by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
mertens.1  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( F `  j )  =  A )
mertens.2  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( K `  j )  =  ( abs `  A ) )
mertens.3  |-  ( (
ph  /\  j  e.  NN0 )  ->  A  e.  CC )
mertens.4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
mertens.5  |-  ( (
ph  /\  k  e.  NN0 )  ->  B  e.  CC )
mertens.6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( H `  k )  =  sum_ j  e.  ( 0 ... k ) ( A  x.  ( G `
 ( k  -  j ) ) ) )
mertens.7  |-  ( ph  ->  seq  0 (  +  ,  K )  e. 
dom 
~~>  )
mertens.8  |-  ( ph  ->  seq  0 (  +  ,  G )  e. 
dom 
~~>  )
Assertion
Ref Expression
mertens  |-  ( ph  ->  seq  0 (  +  ,  H )  ~~>  ( sum_ j  e.  NN0  A  x.  sum_ k  e.  NN0  B
) )
Distinct variable groups:    B, j    j, k, G    ph, j, k    A, k    j, K, k   
j, F    k, H
Allowed substitution hints:    A( j)    B( k)    F( k)    H( j)

Proof of Theorem mertens
Dummy variables  m  n  s  x  y 
z  i  l  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 10278 . 2  |-  NN0  =  ( ZZ>= `  0 )
2 0z 10051 . . 3  |-  0  e.  ZZ
32a1i 10 . 2  |-  ( ph  ->  0  e.  ZZ )
4 seqex 11064 . . 3  |-  seq  0
(  +  ,  H
)  e.  _V
54a1i 10 . 2  |-  ( ph  ->  seq  0 (  +  ,  H )  e. 
_V )
6 mertens.6 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( H `  k )  =  sum_ j  e.  ( 0 ... k ) ( A  x.  ( G `
 ( k  -  j ) ) ) )
7 fzfid 11051 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 0 ... k )  e. 
Fin )
8 simpl 443 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ph )
9 elfznn0 10838 . . . . . . . 8  |-  ( j  e.  ( 0 ... k )  ->  j  e.  NN0 )
10 mertens.3 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  A  e.  CC )
118, 9, 10syl2an 463 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  A  e.  CC )
12 fznn0sub 10840 . . . . . . . . 9  |-  ( j  e.  ( 0 ... k )  ->  (
k  -  j )  e.  NN0 )
1312adantl 452 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
k  -  j )  e.  NN0 )
14 mertens.4 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
15 mertens.5 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  B  e.  CC )
1614, 15eqeltrd 2370 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  e.  CC )
1716ralrimiva 2639 . . . . . . . . . 10  |-  ( ph  ->  A. k  e.  NN0  ( G `  k )  e.  CC )
18 fveq2 5541 . . . . . . . . . . . 12  |-  ( k  =  i  ->  ( G `  k )  =  ( G `  i ) )
1918eleq1d 2362 . . . . . . . . . . 11  |-  ( k  =  i  ->  (
( G `  k
)  e.  CC  <->  ( G `  i )  e.  CC ) )
2019cbvralv 2777 . . . . . . . . . 10  |-  ( A. k  e.  NN0  ( G `
 k )  e.  CC  <->  A. i  e.  NN0  ( G `  i )  e.  CC )
2117, 20sylib 188 . . . . . . . . 9  |-  ( ph  ->  A. i  e.  NN0  ( G `  i )  e.  CC )
2221ad2antrr 706 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  A. i  e.  NN0  ( G `  i )  e.  CC )
23 fveq2 5541 . . . . . . . . . 10  |-  ( i  =  ( k  -  j )  ->  ( G `  i )  =  ( G `  ( k  -  j
) ) )
2423eleq1d 2362 . . . . . . . . 9  |-  ( i  =  ( k  -  j )  ->  (
( G `  i
)  e.  CC  <->  ( G `  ( k  -  j
) )  e.  CC ) )
2524rspcv 2893 . . . . . . . 8  |-  ( ( k  -  j )  e.  NN0  ->  ( A. i  e.  NN0  ( G `
 i )  e.  CC  ->  ( G `  ( k  -  j
) )  e.  CC ) )
2613, 22, 25sylc 56 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( G `  ( k  -  j ) )  e.  CC )
2711, 26mulcld 8871 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( A  x.  ( G `  ( k  -  j
) ) )  e.  CC )
287, 27fsumcl 12222 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  sum_ j  e.  ( 0 ... k
) ( A  x.  ( G `  ( k  -  j ) ) )  e.  CC )
296, 28eqeltrd 2370 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( H `  k )  e.  CC )
301, 3, 29serf 11090 . . 3  |-  ( ph  ->  seq  0 (  +  ,  H ) : NN0 --> CC )
31 ffvelrn 5679 . . 3  |-  ( (  seq  0 (  +  ,  H ) : NN0 --> CC  /\  m  e.  NN0 )  ->  (  seq  0 (  +  ,  H ) `  m
)  e.  CC )
3230, 31sylan 457 . 2  |-  ( (
ph  /\  m  e.  NN0 )  ->  (  seq  0 (  +  ,  H ) `  m
)  e.  CC )
33 mertens.1 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( F `  j )  =  A )
3433adantlr 695 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN0 )  ->  ( F `  j )  =  A )
35 mertens.2 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( K `  j )  =  ( abs `  A ) )
3635adantlr 695 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN0 )  ->  ( K `  j )  =  ( abs `  A
) )
3710adantlr 695 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN0 )  ->  A  e.  CC )
3814adantlr 695 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
3915adantlr 695 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  NN0 )  ->  B  e.  CC )
406adantlr 695 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  NN0 )  ->  ( H `  k )  =  sum_ j  e.  ( 0 ... k ) ( A  x.  ( G `  ( k  -  j ) ) ) )
41 mertens.7 . . . . . 6  |-  ( ph  ->  seq  0 (  +  ,  K )  e. 
dom 
~~>  )
4241adantr 451 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  seq  0
(  +  ,  K
)  e.  dom  ~~>  )
43 mertens.8 . . . . . 6  |-  ( ph  ->  seq  0 (  +  ,  G )  e. 
dom 
~~>  )
4443adantr 451 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  seq  0
(  +  ,  G
)  e.  dom  ~~>  )
45 simpr 447 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
46 fveq2 5541 . . . . . . . . . . . 12  |-  ( l  =  k  ->  ( G `  l )  =  ( G `  k ) )
4746cbvsumv 12185 . . . . . . . . . . 11  |-  sum_ l  e.  ( ZZ>= `  ( i  +  1 ) ) ( G `  l
)  =  sum_ k  e.  ( ZZ>= `  ( i  +  1 ) ) ( G `  k
)
48 oveq1 5881 . . . . . . . . . . . . 13  |-  ( i  =  n  ->  (
i  +  1 )  =  ( n  + 
1 ) )
4948fveq2d 5545 . . . . . . . . . . . 12  |-  ( i  =  n  ->  ( ZZ>=
`  ( i  +  1 ) )  =  ( ZZ>= `  ( n  +  1 ) ) )
5049sumeq1d 12190 . . . . . . . . . . 11  |-  ( i  =  n  ->  sum_ k  e.  ( ZZ>= `  ( i  +  1 ) ) ( G `  k
)  =  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) )
5147, 50syl5eq 2340 . . . . . . . . . 10  |-  ( i  =  n  ->  sum_ l  e.  ( ZZ>= `  ( i  +  1 ) ) ( G `  l
)  =  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) )
5251fveq2d 5545 . . . . . . . . 9  |-  ( i  =  n  ->  ( abs `  sum_ l  e.  (
ZZ>= `  ( i  +  1 ) ) ( G `  l ) )  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) )
5352eqeq2d 2307 . . . . . . . 8  |-  ( i  =  n  ->  (
u  =  ( abs `  sum_ l  e.  (
ZZ>= `  ( i  +  1 ) ) ( G `  l ) )  <->  u  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) ) )
5453cbvrexv 2778 . . . . . . 7  |-  ( E. i  e.  ( 0 ... ( s  - 
1 ) ) u  =  ( abs `  sum_ l  e.  ( ZZ>= `  ( i  +  1 ) ) ( G `
 l ) )  <->  E. n  e.  (
0 ... ( s  - 
1 ) ) u  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) )
55 eqeq1 2302 . . . . . . . 8  |-  ( u  =  z  ->  (
u  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  <->  z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) ) ) )
5655rexbidv 2577 . . . . . . 7  |-  ( u  =  z  ->  ( E. n  e.  (
0 ... ( s  - 
1 ) ) u  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <->  E. n  e.  (
0 ... ( s  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) ) )
5754, 56syl5bb 248 . . . . . 6  |-  ( u  =  z  ->  ( E. i  e.  (
0 ... ( s  - 
1 ) ) u  =  ( abs `  sum_ l  e.  ( ZZ>= `  ( i  +  1 ) ) ( G `
 l ) )  <->  E. n  e.  (
0 ... ( s  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) ) )
5857cbvabv 2415 . . . . 5  |-  { u  |  E. i  e.  ( 0 ... ( s  -  1 ) ) u  =  ( abs `  sum_ l  e.  (
ZZ>= `  ( i  +  1 ) ) ( G `  l ) ) }  =  {
z  |  E. n  e.  ( 0 ... (
s  -  1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) ) }
59 fveq2 5541 . . . . . . . . . . . 12  |-  ( i  =  j  ->  ( K `  i )  =  ( K `  j ) )
6059cbvsumv 12185 . . . . . . . . . . 11  |-  sum_ i  e.  NN0  ( K `  i )  =  sum_ j  e.  NN0  ( K `
 j )
6160oveq1i 5884 . . . . . . . . . 10  |-  ( sum_ i  e.  NN0  ( K `
 i )  +  1 )  =  (
sum_ j  e.  NN0  ( K `  j )  +  1 )
6261oveq2i 5885 . . . . . . . . 9  |-  ( ( x  /  2 )  /  ( sum_ i  e.  NN0  ( K `  i )  +  1 ) )  =  ( ( x  /  2
)  /  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) )
6362breq2i 4047 . . . . . . . 8  |-  ( ( abs `  sum_ i  e.  ( ZZ>= `  ( u  +  1 ) ) ( G `  i
) )  <  (
( x  /  2
)  /  ( sum_ i  e.  NN0  ( K `
 i )  +  1 ) )  <->  ( abs ` 
sum_ i  e.  (
ZZ>= `  ( u  + 
1 ) ) ( G `  i ) )  <  ( ( x  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )
64 fveq2 5541 . . . . . . . . . . . 12  |-  ( i  =  k  ->  ( G `  i )  =  ( G `  k ) )
6564cbvsumv 12185 . . . . . . . . . . 11  |-  sum_ i  e.  ( ZZ>= `  ( u  +  1 ) ) ( G `  i
)  =  sum_ k  e.  ( ZZ>= `  ( u  +  1 ) ) ( G `  k
)
66 oveq1 5881 . . . . . . . . . . . . 13  |-  ( u  =  n  ->  (
u  +  1 )  =  ( n  + 
1 ) )
6766fveq2d 5545 . . . . . . . . . . . 12  |-  ( u  =  n  ->  ( ZZ>=
`  ( u  + 
1 ) )  =  ( ZZ>= `  ( n  +  1 ) ) )
6867sumeq1d 12190 . . . . . . . . . . 11  |-  ( u  =  n  ->  sum_ k  e.  ( ZZ>= `  ( u  +  1 ) ) ( G `  k
)  =  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) )
6965, 68syl5eq 2340 . . . . . . . . . 10  |-  ( u  =  n  ->  sum_ i  e.  ( ZZ>= `  ( u  +  1 ) ) ( G `  i
)  =  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) )
7069fveq2d 5545 . . . . . . . . 9  |-  ( u  =  n  ->  ( abs `  sum_ i  e.  (
ZZ>= `  ( u  + 
1 ) ) ( G `  i ) )  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) )
7170breq1d 4049 . . . . . . . 8  |-  ( u  =  n  ->  (
( abs `  sum_ i  e.  ( ZZ>= `  ( u  +  1
) ) ( G `
 i ) )  <  ( ( x  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  <-> 
( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <  ( ( x  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
7263, 71syl5bb 248 . . . . . . 7  |-  ( u  =  n  ->  (
( abs `  sum_ i  e.  ( ZZ>= `  ( u  +  1
) ) ( G `
 i ) )  <  ( ( x  /  2 )  / 
( sum_ i  e.  NN0  ( K `  i )  +  1 ) )  <-> 
( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <  ( ( x  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
7372cbvralv 2777 . . . . . 6  |-  ( A. u  e.  ( ZZ>= `  s ) ( abs `  sum_ i  e.  (
ZZ>= `  ( u  + 
1 ) ) ( G `  i ) )  <  ( ( x  /  2 )  /  ( sum_ i  e.  NN0  ( K `  i )  +  1 ) )  <->  A. n  e.  ( ZZ>= `  s )
( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <  ( ( x  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )
7473anbi2i 675 . . . . 5  |-  ( ( s  e.  NN  /\  A. u  e.  ( ZZ>= `  s ) ( abs `  sum_ i  e.  (
ZZ>= `  ( u  + 
1 ) ) ( G `  i ) )  <  ( ( x  /  2 )  /  ( sum_ i  e.  NN0  ( K `  i )  +  1 ) ) )  <->  ( s  e.  NN  /\  A. n  e.  ( ZZ>= `  s )
( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <  ( ( x  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
7534, 36, 37, 38, 39, 40, 42, 44, 45, 58, 74mertenslem2 12357 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y )
( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )  < 
x )
76 eluznn0 10304 . . . . . . . . 9  |-  ( ( y  e.  NN0  /\  m  e.  ( ZZ>= `  y ) )  ->  m  e.  NN0 )
77 fzfid 11051 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( 0 ... m )  e. 
Fin )
78 simpll 730 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  ph )
79 elfznn0 10838 . . . . . . . . . . . . . . 15  |-  ( j  e.  ( 0 ... m )  ->  j  e.  NN0 )
8079adantl 452 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  j  e.  NN0 )
811, 3, 14, 15, 43isumcl 12240 . . . . . . . . . . . . . . . 16  |-  ( ph  -> 
sum_ k  e.  NN0  B  e.  CC )
8281adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e. 
NN0  B  e.  CC )
8333, 10eqeltrd 2370 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( F `  j )  e.  CC )
8482, 83mulcld 8871 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( sum_ k  e.  NN0  B  x.  ( F `  j ) )  e.  CC )
8578, 80, 84syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  ( sum_ k  e.  NN0  B  x.  ( F `  j
) )  e.  CC )
86 fzfid 11051 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  (
0 ... ( m  -  j ) )  e. 
Fin )
87 simplll 734 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  ( 0 ... ( m  -  j ) ) )  ->  ph )
8879ad2antlr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  ( 0 ... ( m  -  j ) ) )  ->  j  e.  NN0 )
8987, 88, 10syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  ( 0 ... ( m  -  j ) ) )  ->  A  e.  CC )
90 elfznn0 10838 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( 0 ... ( m  -  j
) )  ->  k  e.  NN0 )
9190adantl 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  ( 0 ... ( m  -  j ) ) )  ->  k  e.  NN0 )
9287, 91, 16syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  ( 0 ... ( m  -  j ) ) )  ->  ( G `  k )  e.  CC )
9389, 92mulcld 8871 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  ( 0 ... ( m  -  j ) ) )  ->  ( A  x.  ( G `  k
) )  e.  CC )
9486, 93fsumcl 12222 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  sum_ k  e.  ( 0 ... (
m  -  j ) ) ( A  x.  ( G `  k ) )  e.  CC )
9577, 85, 94fsumsub 12266 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN0 )  ->  sum_ j  e.  ( 0 ... m
) ( ( sum_ k  e.  NN0  B  x.  ( F `  j ) )  -  sum_ k  e.  ( 0 ... (
m  -  j ) ) ( A  x.  ( G `  k ) ) )  =  (
sum_ j  e.  ( 0 ... m ) ( sum_ k  e.  NN0  B  x.  ( F `  j ) )  -  sum_ j  e.  ( 0 ... m ) sum_ k  e.  ( 0 ... ( m  -  j ) ) ( A  x.  ( G `
 k ) ) ) )
9678, 80, 10syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  A  e.  CC )
9781ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  sum_ k  e.  NN0  B  e.  CC )
9886, 92fsumcl 12222 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  sum_ k  e.  ( 0 ... (
m  -  j ) ) ( G `  k )  e.  CC )
9996, 97, 98subdid 9251 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  ( A  x.  ( sum_ k  e.  NN0  B  -  sum_ k  e.  ( 0 ... ( m  -  j ) ) ( G `  k ) ) )  =  ( ( A  x.  sum_ k  e.  NN0  B )  -  ( A  x.  sum_ k  e.  ( 0 ... ( m  -  j ) ) ( G `  k ) ) ) )
100 eqid 2296 . . . . . . . . . . . . . . . . . . 19  |-  ( ZZ>= `  ( ( m  -  j )  +  1 ) )  =  (
ZZ>= `  ( ( m  -  j )  +  1 ) )
101 fznn0sub 10840 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  e.  ( 0 ... m )  ->  (
m  -  j )  e.  NN0 )
102101adantl 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  (
m  -  j )  e.  NN0 )
103 peano2nn0 10020 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( m  -  j )  e.  NN0  ->  ( ( m  -  j )  +  1 )  e. 
NN0 )
104102, 103syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  (
( m  -  j
)  +  1 )  e.  NN0 )
10578, 14sylan 457 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
10678, 15sylan 457 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  NN0 )  ->  B  e.  CC )
10743ad2antrr 706 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  seq  0 (  +  ,  G )  e.  dom  ~~>  )
1081, 100, 104, 105, 106, 107isumsplit 12315 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  sum_ k  e.  NN0  B  =  (
sum_ k  e.  ( 0 ... ( ( ( m  -  j
)  +  1 )  -  1 ) ) B  +  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )
109102nn0cnd 10036 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  (
m  -  j )  e.  CC )
110 ax-1cn 8811 . . . . . . . . . . . . . . . . . . . . . . 23  |-  1  e.  CC
111 pncan 9073 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( m  -  j
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( m  -  j )  +  1 )  -  1 )  =  ( m  -  j ) )
112109, 110, 111sylancl 643 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  (
( ( m  -  j )  +  1 )  -  1 )  =  ( m  -  j ) )
113112oveq2d 5890 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  (
0 ... ( ( ( m  -  j )  +  1 )  - 
1 ) )  =  ( 0 ... (
m  -  j ) ) )
114113sumeq1d 12190 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  sum_ k  e.  ( 0 ... (
( ( m  -  j )  +  1 )  -  1 ) ) B  =  sum_ k  e.  ( 0 ... ( m  -  j ) ) B )
11587, 91, 14syl2anc 642 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  ( 0 ... ( m  -  j ) ) )  ->  ( G `  k )  =  B )
116115sumeq2dv 12192 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  sum_ k  e.  ( 0 ... (
m  -  j ) ) ( G `  k )  =  sum_ k  e.  ( 0 ... ( m  -  j ) ) B )
117114, 116eqtr4d 2331 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  sum_ k  e.  ( 0 ... (
( ( m  -  j )  +  1 )  -  1 ) ) B  =  sum_ k  e.  ( 0 ... ( m  -  j ) ) ( G `  k ) )
118117oveq1d 5889 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  ( sum_ k  e.  ( 0 ... ( ( ( m  -  j )  +  1 )  - 
1 ) ) B  +  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  =  ( sum_ k  e.  ( 0 ... ( m  -  j ) ) ( G `  k )  +  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )
119108, 118eqtrd 2328 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  sum_ k  e.  NN0  B  =  (
sum_ k  e.  ( 0 ... ( m  -  j ) ) ( G `  k
)  +  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )
120119oveq1d 5889 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  ( sum_ k  e.  NN0  B  -  sum_ k  e.  ( 0 ... ( m  -  j ) ) ( G `  k
) )  =  ( ( sum_ k  e.  ( 0 ... ( m  -  j ) ) ( G `  k
)  +  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B )  -  sum_ k  e.  ( 0 ... ( m  -  j ) ) ( G `  k ) ) )
121104nn0zd 10131 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  (
( m  -  j
)  +  1 )  e.  ZZ )
122 simplll 734 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  ph )
123 eluznn0 10304 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( m  -  j )  +  1 )  e.  NN0  /\  k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) )  -> 
k  e.  NN0 )
124104, 123sylan 457 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  k  e.  NN0 )
125122, 124, 14syl2anc 642 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  ( G `  k )  =  B )
126122, 124, 15syl2anc 642 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  B  e.  CC )
127105, 106eqeltrd 2370 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  NN0 )  ->  ( G `  k )  e.  CC )
1281, 104, 127iserex 12146 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  (  seq  0 (  +  ,  G )  e.  dom  ~~>  <->  seq  ( ( m  -  j )  +  1 ) (  +  ,  G )  e.  dom  ~~>  ) )
129107, 128mpbid 201 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  seq  ( ( m  -  j )  +  1 ) (  +  ,  G )  e.  dom  ~~>  )
130100, 121, 125, 126, 129isumcl 12240 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B  e.  CC )
13198, 130pncan2d 9175 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  (
( sum_ k  e.  ( 0 ... ( m  -  j ) ) ( G `  k
)  +  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B )  -  sum_ k  e.  ( 0 ... ( m  -  j ) ) ( G `  k ) )  =  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B )
132120, 131eqtrd 2328 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  ( sum_ k  e.  NN0  B  -  sum_ k  e.  ( 0 ... ( m  -  j ) ) ( G `  k
) )  =  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )
133132oveq2d 5890 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  ( A  x.  ( sum_ k  e.  NN0  B  -  sum_ k  e.  ( 0 ... ( m  -  j ) ) ( G `  k ) ) )  =  ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )
13410, 82mulcomd 8872 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A  x.  sum_ k  e.  NN0  B )  =  ( sum_ k  e.  NN0  B  x.  A ) )
13533oveq2d 5890 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( sum_ k  e.  NN0  B  x.  ( F `  j ) )  =  ( sum_ k  e.  NN0  B  x.  A ) )
136134, 135eqtr4d 2331 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A  x.  sum_ k  e.  NN0  B )  =  ( sum_ k  e.  NN0  B  x.  ( F `  j ) ) )
13778, 80, 136syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  ( A  x.  sum_ k  e. 
NN0  B )  =  ( sum_ k  e.  NN0  B  x.  ( F `  j ) ) )
13886, 96, 92fsummulc2 12262 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  ( A  x.  sum_ k  e.  ( 0 ... (
m  -  j ) ) ( G `  k ) )  = 
sum_ k  e.  ( 0 ... ( m  -  j ) ) ( A  x.  ( G `  k )
) )
139137, 138oveq12d 5892 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  (
( A  x.  sum_ k  e.  NN0  B )  -  ( A  x.  sum_ k  e.  ( 0 ... ( m  -  j ) ) ( G `  k ) ) )  =  ( ( sum_ k  e.  NN0  B  x.  ( F `  j ) )  -  sum_ k  e.  ( 0 ... ( m  -  j ) ) ( A  x.  ( G `
 k ) ) ) )
14099, 133, 1393eqtr3rd 2337 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  (
( sum_ k  e.  NN0  B  x.  ( F `  j ) )  -  sum_ k  e.  ( 0 ... ( m  -  j ) ) ( A  x.  ( G `
 k ) ) )  =  ( A  x.  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )
141140sumeq2dv 12192 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN0 )  ->  sum_ j  e.  ( 0 ... m
) ( ( sum_ k  e.  NN0  B  x.  ( F `  j ) )  -  sum_ k  e.  ( 0 ... (
m  -  j ) ) ( A  x.  ( G `  k ) ) )  =  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )
142 fveq2 5541 . . . . . . . . . . . . . . . . 17  |-  ( n  =  j  ->  ( F `  n )  =  ( F `  j ) )
143142oveq2d 5890 . . . . . . . . . . . . . . . 16  |-  ( n  =  j  ->  ( sum_ k  e.  NN0  B  x.  ( F `  n
) )  =  (
sum_ k  e.  NN0  B  x.  ( F `  j ) ) )
144 eqid 2296 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n ) ) )  =  ( n  e.  NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n ) ) )
145 ovex 5899 . . . . . . . . . . . . . . . 16  |-  ( sum_ k  e.  NN0  B  x.  ( F `  j ) )  e.  _V
146143, 144, 145fvmpt 5618 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN0  ->  ( ( n  e.  NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n ) ) ) `  j
)  =  ( sum_ k  e.  NN0  B  x.  ( F `  j ) ) )
14780, 146syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  (
( n  e.  NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n ) ) ) `
 j )  =  ( sum_ k  e.  NN0  B  x.  ( F `  j ) ) )
148 simpr 447 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN0 )  ->  m  e.  NN0 )
149148, 1syl6eleq 2386 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN0 )  ->  m  e.  ( ZZ>= `  0 )
)
150147, 149, 85fsumser 12219 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN0 )  ->  sum_ j  e.  ( 0 ... m
) ( sum_ k  e.  NN0  B  x.  ( F `  j )
)  =  (  seq  0 (  +  , 
( n  e.  NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n ) ) ) ) `  m ) )
151 fveq2 5541 . . . . . . . . . . . . . . . 16  |-  ( n  =  k  ->  ( G `  n )  =  ( G `  k ) )
152151oveq2d 5890 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  ( A  x.  ( G `  n ) )  =  ( A  x.  ( G `  k )
) )
153 fveq2 5541 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( k  -  j )  ->  ( G `  n )  =  ( G `  ( k  -  j
) ) )
154153oveq2d 5890 . . . . . . . . . . . . . . 15  |-  ( n  =  ( k  -  j )  ->  ( A  x.  ( G `  n ) )  =  ( A  x.  ( G `  ( k  -  j ) ) ) )
15593anasss 628 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
j  e.  ( 0 ... m )  /\  k  e.  ( 0 ... ( m  -  j ) ) ) )  ->  ( A  x.  ( G `  k
) )  e.  CC )
156152, 154, 155fsum0diag2 12261 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN0 )  ->  sum_ j  e.  ( 0 ... m
) sum_ k  e.  ( 0 ... ( m  -  j ) ) ( A  x.  ( G `  k )
)  =  sum_ k  e.  ( 0 ... m
) sum_ j  e.  ( 0 ... k ) ( A  x.  ( G `  ( k  -  j ) ) ) )
157 simpll 730 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  ( 0 ... m
) )  ->  ph )
158 elfznn0 10838 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( 0 ... m )  ->  k  e.  NN0 )
159158adantl 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  ( 0 ... m
) )  ->  k  e.  NN0 )
160157, 159, 6syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  ( 0 ... m
) )  ->  ( H `  k )  =  sum_ j  e.  ( 0 ... k ) ( A  x.  ( G `  ( k  -  j ) ) ) )
161157, 159, 28syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  ( 0 ... m
) )  ->  sum_ j  e.  ( 0 ... k
) ( A  x.  ( G `  ( k  -  j ) ) )  e.  CC )
162160, 149, 161fsumser 12219 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN0 )  ->  sum_ k  e.  ( 0 ... m
) sum_ j  e.  ( 0 ... k ) ( A  x.  ( G `  ( k  -  j ) ) )  =  (  seq  0 (  +  ,  H ) `  m
) )
163156, 162eqtrd 2328 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN0 )  ->  sum_ j  e.  ( 0 ... m
) sum_ k  e.  ( 0 ... ( m  -  j ) ) ( A  x.  ( G `  k )
)  =  (  seq  0 (  +  ,  H ) `  m
) )
164150, 163oveq12d 5892 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( sum_ j  e.  ( 0 ... m ) (
sum_ k  e.  NN0  B  x.  ( F `  j ) )  -  sum_ j  e.  ( 0 ... m ) sum_ k  e.  ( 0 ... ( m  -  j ) ) ( A  x.  ( G `
 k ) ) )  =  ( (  seq  0 (  +  ,  ( n  e. 
NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n )
) ) ) `  m )  -  (  seq  0 (  +  ,  H ) `  m
) ) )
16595, 141, 1643eqtr3rd 2337 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (  seq  0 (  +  , 
( n  e.  NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n ) ) ) ) `  m )  -  (  seq  0
(  +  ,  H
) `  m )
)  =  sum_ j  e.  ( 0 ... m
) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )
166165fveq2d 5545 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( abs `  ( (  seq  0
(  +  ,  ( n  e.  NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n ) ) ) ) `  m )  -  (  seq  0 (  +  ,  H ) `  m
) ) )  =  ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) ) )
167166breq1d 4049 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( ( abs `  ( (  seq  0 (  +  , 
( n  e.  NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n ) ) ) ) `  m )  -  (  seq  0
(  +  ,  H
) `  m )
) )  <  x  <->  ( abs `  sum_ j  e.  ( 0 ... m
) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  x ) )
16876, 167sylan2 460 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  NN0  /\  m  e.  ( ZZ>= `  y )
) )  ->  (
( abs `  (
(  seq  0 (  +  ,  ( n  e.  NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n ) ) ) ) `  m )  -  (  seq  0 (  +  ,  H ) `  m
) ) )  < 
x  <->  ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )  < 
x ) )
169168anassrs 629 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  NN0 )  /\  m  e.  ( ZZ>= `  y )
)  ->  ( ( abs `  ( (  seq  0 (  +  , 
( n  e.  NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n ) ) ) ) `  m )  -  (  seq  0
(  +  ,  H
) `  m )
) )  <  x  <->  ( abs `  sum_ j  e.  ( 0 ... m
) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  x ) )
170169ralbidva 2572 . . . . . 6  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( A. m  e.  ( ZZ>= `  y ) ( abs `  ( (  seq  0
(  +  ,  ( n  e.  NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n ) ) ) ) `  m )  -  (  seq  0 (  +  ,  H ) `  m
) ) )  < 
x  <->  A. m  e.  (
ZZ>= `  y ) ( abs `  sum_ j  e.  ( 0 ... m
) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  x ) )
171170rexbidva 2573 . . . . 5  |-  ( ph  ->  ( E. y  e. 
NN0  A. m  e.  (
ZZ>= `  y ) ( abs `  ( (  seq  0 (  +  ,  ( n  e. 
NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n )
) ) ) `  m )  -  (  seq  0 (  +  ,  H ) `  m
) ) )  < 
x  <->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  x ) )
172171adantr 451 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. y  e.  NN0  A. m  e.  ( ZZ>= `  y )
( abs `  (
(  seq  0 (  +  ,  ( n  e.  NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n ) ) ) ) `  m )  -  (  seq  0 (  +  ,  H ) `  m
) ) )  < 
x  <->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  x ) )
17375, 172mpbird 223 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y )
( abs `  (
(  seq  0 (  +  ,  ( n  e.  NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n ) ) ) ) `  m )  -  (  seq  0 (  +  ,  H ) `  m
) ) )  < 
x )
174173ralrimiva 2639 . 2  |-  ( ph  ->  A. x  e.  RR+  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y )
( abs `  (
(  seq  0 (  +  ,  ( n  e.  NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n ) ) ) ) `  m )  -  (  seq  0 (  +  ,  H ) `  m
) ) )  < 
x )
17533fveq2d 5545 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( abs `  ( F `  j
) )  =  ( abs `  A ) )
17635, 175eqtr4d 2331 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( K `  j )  =  ( abs `  ( F `
 j ) ) )
1771, 3, 176, 83, 41abscvgcvg 12293 . . . . 5  |-  ( ph  ->  seq  0 (  +  ,  F )  e. 
dom 
~~>  )
1781, 3, 33, 10, 177isumclim2 12237 . . . 4  |-  ( ph  ->  seq  0 (  +  ,  F )  ~~>  sum_ j  e.  NN0  A )
17983ralrimiva 2639 . . . . 5  |-  ( ph  ->  A. j  e.  NN0  ( F `  j )  e.  CC )
180 fveq2 5541 . . . . . . 7  |-  ( j  =  m  ->  ( F `  j )  =  ( F `  m ) )
181180eleq1d 2362 . . . . . 6  |-  ( j  =  m  ->  (
( F `  j
)  e.  CC  <->  ( F `  m )  e.  CC ) )
182181rspccva 2896 . . . . 5  |-  ( ( A. j  e.  NN0  ( F `  j )  e.  CC  /\  m  e.  NN0 )  ->  ( F `  m )  e.  CC )
183179, 182sylan 457 . . . 4  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( F `  m )  e.  CC )
184 fveq2 5541 . . . . . . 7  |-  ( n  =  m  ->  ( F `  n )  =  ( F `  m ) )
185184oveq2d 5890 . . . . . 6  |-  ( n  =  m  ->  ( sum_ k  e.  NN0  B  x.  ( F `  n
) )  =  (
sum_ k  e.  NN0  B  x.  ( F `  m ) ) )
186 ovex 5899 . . . . . 6  |-  ( sum_ k  e.  NN0  B  x.  ( F `  m ) )  e.  _V
187185, 144, 186fvmpt 5618 . . . . 5  |-  ( m  e.  NN0  ->  ( ( n  e.  NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n ) ) ) `  m
)  =  ( sum_ k  e.  NN0  B  x.  ( F `  m ) ) )
188187adantl 452 . . . 4  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n ) ) ) `  m
)  =  ( sum_ k  e.  NN0  B  x.  ( F `  m ) ) )
1891, 3, 81, 178, 183, 188isermulc2 12147 . . 3  |-  ( ph  ->  seq  0 (  +  ,  ( n  e. 
NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n )
) ) )  ~~>  ( sum_ k  e.  NN0  B  x.  sum_ j  e.  NN0  A
) )
1901, 3, 33, 10, 177isumcl 12240 . . . 4  |-  ( ph  -> 
sum_ j  e.  NN0  A  e.  CC )
19181, 190mulcomd 8872 . . 3  |-  ( ph  ->  ( sum_ k  e.  NN0  B  x.  sum_ j  e.  NN0  A )  =  ( sum_ j  e.  NN0  A  x.  sum_ k  e.  NN0  B
) )
192189, 191breqtrd 4063 . 2  |-  ( ph  ->  seq  0 (  +  ,  ( n  e. 
NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n )
) ) )  ~~>  ( sum_ j  e.  NN0  A  x.  sum_ k  e.  NN0  B
) )
1931, 3, 5, 32, 174, 1922clim 12062 1  |-  ( ph  ->  seq  0 (  +  ,  H )  ~~>  ( sum_ j  e.  NN0  A  x.  sum_ k  e.  NN0  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   {cab 2282   A.wral 2556   E.wrex 2557   _Vcvv 2801   class class class wbr 4039    e. cmpt 4093   dom cdm 4705   -->wf 5267   ` cfv 5271  (class class class)co 5874   CCcc 8751   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    < clt 8883    - cmin 9053    / cdiv 9439   NNcn 9762   2c2 9811   NN0cn0 9981   ZZcz 10040   ZZ>=cuz 10246   RR+crp 10370   ...cfz 10798    seq cseq 11062   abscabs 11735    ~~> cli 11974   sum_csu 12174
This theorem is referenced by:  efaddlem  12390
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-ico 10678  df-fz 10799  df-fzo 10887  df-fl 10941  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175
  Copyright terms: Public domain W3C validator