MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcnp Unicode version

Theorem metcnp 18087
Description: Two ways to say a mapping from metric  C to metric  D is continuous at point  P. (Contributed by NM, 11-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
metcn.2  |-  J  =  ( MetOpen `  C )
metcn.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
metcnp  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) ) )
Distinct variable groups:    y, w, z, F    w, J, y, z    w, K, y, z    w, X, y, z    w, Y, y, z    w, C, y, z    w, D, y, z    w, P, y, z

Proof of Theorem metcnp
StepHypRef Expression
1 metcn.2 . . 3  |-  J  =  ( MetOpen `  C )
2 metcn.4 . . 3  |-  K  =  ( MetOpen `  D )
31, 2metcnp3 18086 . 2  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) ) )
4 ffun 5391 . . . . . . . . 9  |-  ( F : X --> Y  ->  Fun  F )
54ad2antlr 707 . . . . . . . 8  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  Fun  F )
6 simpll1 994 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  C  e.  ( * Met `  X
) )
7 simpll3 996 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  P  e.  X )
8 rpxr 10361 . . . . . . . . . . 11  |-  ( z  e.  RR+  ->  z  e. 
RR* )
98ad2antll 709 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  z  e.  RR* )
10 blssm 17968 . . . . . . . . . 10  |-  ( ( C  e.  ( * Met `  X )  /\  P  e.  X  /\  z  e.  RR* )  ->  ( P ( ball `  C ) z ) 
C_  X )
116, 7, 9, 10syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( P
( ball `  C )
z )  C_  X
)
12 fdm 5393 . . . . . . . . . 10  |-  ( F : X --> Y  ->  dom  F  =  X )
1312ad2antlr 707 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  dom  F  =  X )
1411, 13sseqtr4d 3215 . . . . . . . 8  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( P
( ball `  C )
z )  C_  dom  F )
15 funimass4 5573 . . . . . . . 8  |-  ( ( Fun  F  /\  ( P ( ball `  C
) z )  C_  dom  F )  ->  (
( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  <->  A. w  e.  ( P ( ball `  C ) z ) ( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) ) )
165, 14, 15syl2anc 642 . . . . . . 7  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y )  <->  A. w  e.  ( P ( ball `  C
) z ) ( F `  w )  e.  ( ( F `
 P ) (
ball `  D )
y ) ) )
17 elbl 17949 . . . . . . . . . . 11  |-  ( ( C  e.  ( * Met `  X )  /\  P  e.  X  /\  z  e.  RR* )  ->  ( w  e.  ( P ( ball `  C
) z )  <->  ( w  e.  X  /\  ( P C w )  < 
z ) ) )
186, 7, 9, 17syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( w  e.  ( P ( ball `  C ) z )  <-> 
( w  e.  X  /\  ( P C w )  <  z ) ) )
1918imbi1d 308 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
w  e.  ( P ( ball `  C
) z )  -> 
( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) )  <-> 
( ( w  e.  X  /\  ( P C w )  < 
z )  ->  ( F `  w )  e.  ( ( F `  P ) ( ball `  D ) y ) ) ) )
20 impexp 433 . . . . . . . . . 10  |-  ( ( ( w  e.  X  /\  ( P C w )  <  z )  ->  ( F `  w )  e.  ( ( F `  P
) ( ball `  D
) y ) )  <-> 
( w  e.  X  ->  ( ( P C w )  <  z  ->  ( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) ) ) )
21 simpl2 959 . . . . . . . . . . . . . 14  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  ->  D  e.  ( * Met `  Y ) )
2221ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  D  e.  ( * Met `  Y
) )
23 simplrl 736 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  y  e.  RR+ )
2423rpxrd 10391 . . . . . . . . . . . . 13  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  y  e.  RR* )
25 simpllr 735 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  F : X --> Y )
267adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  P  e.  X )
27 ffvelrn 5663 . . . . . . . . . . . . . 14  |-  ( ( F : X --> Y  /\  P  e.  X )  ->  ( F `  P
)  e.  Y )
2825, 26, 27syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  ( F `  P )  e.  Y )
29 simplr 731 . . . . . . . . . . . . . 14  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  F : X
--> Y )
30 ffvelrn 5663 . . . . . . . . . . . . . 14  |-  ( ( F : X --> Y  /\  w  e.  X )  ->  ( F `  w
)  e.  Y )
3129, 30sylan 457 . . . . . . . . . . . . 13  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  ( F `  w )  e.  Y )
32 elbl2 17950 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( * Met `  Y
)  /\  y  e.  RR* )  /\  ( ( F `  P )  e.  Y  /\  ( F `  w )  e.  Y ) )  -> 
( ( F `  w )  e.  ( ( F `  P
) ( ball `  D
) y )  <->  ( ( F `  P ) D ( F `  w ) )  < 
y ) )
3322, 24, 28, 31, 32syl22anc 1183 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  (
( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y )  <->  ( ( F `  P ) D ( F `  w ) )  < 
y ) )
3433imbi2d 307 . . . . . . . . . . 11  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  (
( ( P C w )  <  z  ->  ( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) )  <-> 
( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) )
3534pm5.74da 668 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
w  e.  X  -> 
( ( P C w )  <  z  ->  ( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) ) )  <->  ( w  e.  X  ->  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) ) )
3620, 35syl5bb 248 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
( w  e.  X  /\  ( P C w )  <  z )  ->  ( F `  w )  e.  ( ( F `  P
) ( ball `  D
) y ) )  <-> 
( w  e.  X  ->  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) ) )
3719, 36bitrd 244 . . . . . . . 8  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
w  e.  ( P ( ball `  C
) z )  -> 
( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) )  <-> 
( w  e.  X  ->  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) ) )
3837ralbidv2 2565 . . . . . . 7  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( A. w  e.  ( P
( ball `  C )
z ) ( F `
 w )  e.  ( ( F `  P ) ( ball `  D ) y )  <->  A. w  e.  X  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) )
3916, 38bitrd 244 . . . . . 6  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y )  <->  A. w  e.  X  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) )
4039anassrs 629 . . . . 5  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  z  e.  RR+ )  -> 
( ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y )  <->  A. w  e.  X  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) )
4140rexbidva 2560 . . . 4  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  <->  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) )
4241ralbidva 2559 . . 3  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  <->  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) )
4342pm5.32da 622 . 2  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  ->  (
( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) ) )
443, 43bitrd 244 1  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    C_ wss 3152   class class class wbr 4023   dom cdm 4689   "cima 4692   Fun wfun 5249   -->wf 5251   ` cfv 5255  (class class class)co 5858   RR*cxr 8866    < clt 8867   RR+crp 10354   * Metcxmt 16369   ballcbl 16371   MetOpencmopn 16372    CnP ccnp 16955
This theorem is referenced by:  metcnp2  18088  metcn  18089  metcnpi  18090  txmetcnp  18093  abelth  19817
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-topgen 13344  df-xmet 16373  df-bl 16375  df-mopn 16376  df-top 16636  df-bases 16638  df-topon 16639  df-cnp 16958
  Copyright terms: Public domain W3C validator