MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcnp Unicode version

Theorem metcnp 18103
Description: Two ways to say a mapping from metric  C to metric  D is continuous at point  P. (Contributed by NM, 11-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
metcn.2  |-  J  =  ( MetOpen `  C )
metcn.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
metcnp  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) ) )
Distinct variable groups:    y, w, z, F    w, J, y, z    w, K, y, z    w, X, y, z    w, Y, y, z    w, C, y, z    w, D, y, z    w, P, y, z

Proof of Theorem metcnp
StepHypRef Expression
1 metcn.2 . . 3  |-  J  =  ( MetOpen `  C )
2 metcn.4 . . 3  |-  K  =  ( MetOpen `  D )
31, 2metcnp3 18102 . 2  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) ) )
4 ffun 5407 . . . . . . . . 9  |-  ( F : X --> Y  ->  Fun  F )
54ad2antlr 707 . . . . . . . 8  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  Fun  F )
6 simpll1 994 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  C  e.  ( * Met `  X
) )
7 simpll3 996 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  P  e.  X )
8 rpxr 10377 . . . . . . . . . . 11  |-  ( z  e.  RR+  ->  z  e. 
RR* )
98ad2antll 709 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  z  e.  RR* )
10 blssm 17984 . . . . . . . . . 10  |-  ( ( C  e.  ( * Met `  X )  /\  P  e.  X  /\  z  e.  RR* )  ->  ( P ( ball `  C ) z ) 
C_  X )
116, 7, 9, 10syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( P
( ball `  C )
z )  C_  X
)
12 fdm 5409 . . . . . . . . . 10  |-  ( F : X --> Y  ->  dom  F  =  X )
1312ad2antlr 707 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  dom  F  =  X )
1411, 13sseqtr4d 3228 . . . . . . . 8  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( P
( ball `  C )
z )  C_  dom  F )
15 funimass4 5589 . . . . . . . 8  |-  ( ( Fun  F  /\  ( P ( ball `  C
) z )  C_  dom  F )  ->  (
( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  <->  A. w  e.  ( P ( ball `  C ) z ) ( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) ) )
165, 14, 15syl2anc 642 . . . . . . 7  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y )  <->  A. w  e.  ( P ( ball `  C
) z ) ( F `  w )  e.  ( ( F `
 P ) (
ball `  D )
y ) ) )
17 elbl 17965 . . . . . . . . . . 11  |-  ( ( C  e.  ( * Met `  X )  /\  P  e.  X  /\  z  e.  RR* )  ->  ( w  e.  ( P ( ball `  C
) z )  <->  ( w  e.  X  /\  ( P C w )  < 
z ) ) )
186, 7, 9, 17syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( w  e.  ( P ( ball `  C ) z )  <-> 
( w  e.  X  /\  ( P C w )  <  z ) ) )
1918imbi1d 308 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
w  e.  ( P ( ball `  C
) z )  -> 
( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) )  <-> 
( ( w  e.  X  /\  ( P C w )  < 
z )  ->  ( F `  w )  e.  ( ( F `  P ) ( ball `  D ) y ) ) ) )
20 impexp 433 . . . . . . . . . 10  |-  ( ( ( w  e.  X  /\  ( P C w )  <  z )  ->  ( F `  w )  e.  ( ( F `  P
) ( ball `  D
) y ) )  <-> 
( w  e.  X  ->  ( ( P C w )  <  z  ->  ( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) ) ) )
21 simpl2 959 . . . . . . . . . . . . . 14  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  ->  D  e.  ( * Met `  Y ) )
2221ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  D  e.  ( * Met `  Y
) )
23 simplrl 736 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  y  e.  RR+ )
2423rpxrd 10407 . . . . . . . . . . . . 13  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  y  e.  RR* )
25 simpllr 735 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  F : X --> Y )
267adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  P  e.  X )
27 ffvelrn 5679 . . . . . . . . . . . . . 14  |-  ( ( F : X --> Y  /\  P  e.  X )  ->  ( F `  P
)  e.  Y )
2825, 26, 27syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  ( F `  P )  e.  Y )
29 simplr 731 . . . . . . . . . . . . . 14  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  F : X
--> Y )
30 ffvelrn 5679 . . . . . . . . . . . . . 14  |-  ( ( F : X --> Y  /\  w  e.  X )  ->  ( F `  w
)  e.  Y )
3129, 30sylan 457 . . . . . . . . . . . . 13  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  ( F `  w )  e.  Y )
32 elbl2 17966 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( * Met `  Y
)  /\  y  e.  RR* )  /\  ( ( F `  P )  e.  Y  /\  ( F `  w )  e.  Y ) )  -> 
( ( F `  w )  e.  ( ( F `  P
) ( ball `  D
) y )  <->  ( ( F `  P ) D ( F `  w ) )  < 
y ) )
3322, 24, 28, 31, 32syl22anc 1183 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  (
( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y )  <->  ( ( F `  P ) D ( F `  w ) )  < 
y ) )
3433imbi2d 307 . . . . . . . . . . 11  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  (
( ( P C w )  <  z  ->  ( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) )  <-> 
( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) )
3534pm5.74da 668 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
w  e.  X  -> 
( ( P C w )  <  z  ->  ( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) ) )  <->  ( w  e.  X  ->  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) ) )
3620, 35syl5bb 248 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
( w  e.  X  /\  ( P C w )  <  z )  ->  ( F `  w )  e.  ( ( F `  P
) ( ball `  D
) y ) )  <-> 
( w  e.  X  ->  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) ) )
3719, 36bitrd 244 . . . . . . . 8  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
w  e.  ( P ( ball `  C
) z )  -> 
( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) )  <-> 
( w  e.  X  ->  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) ) )
3837ralbidv2 2578 . . . . . . 7  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( A. w  e.  ( P
( ball `  C )
z ) ( F `
 w )  e.  ( ( F `  P ) ( ball `  D ) y )  <->  A. w  e.  X  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) )
3916, 38bitrd 244 . . . . . 6  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y )  <->  A. w  e.  X  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) )
4039anassrs 629 . . . . 5  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  z  e.  RR+ )  -> 
( ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y )  <->  A. w  e.  X  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) )
4140rexbidva 2573 . . . 4  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  <->  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) )
4241ralbidva 2572 . . 3  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  <->  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) )
4342pm5.32da 622 . 2  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  ->  (
( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) ) )
443, 43bitrd 244 1  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557    C_ wss 3165   class class class wbr 4039   dom cdm 4705   "cima 4708   Fun wfun 5265   -->wf 5267   ` cfv 5271  (class class class)co 5874   RR*cxr 8882    < clt 8883   RR+crp 10370   * Metcxmt 16385   ballcbl 16387   MetOpencmopn 16388    CnP ccnp 16971
This theorem is referenced by:  metcnp2  18104  metcn  18105  metcnpi  18106  txmetcnp  18109  abelth  19833
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-topgen 13360  df-xmet 16389  df-bl 16391  df-mopn 16392  df-top 16652  df-bases 16654  df-topon 16655  df-cnp 16974
  Copyright terms: Public domain W3C validator