MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcnp3 Unicode version

Theorem metcnp3 18086
Description: Two ways to express that  F is continuous at  P for metric spaces. Proposition 14-4.2 of [Gleason] p. 240. (Contributed by NM, 17-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
metcn.2  |-  J  =  ( MetOpen `  C )
metcn.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
metcnp3  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) ) )
Distinct variable groups:    y, z, F    y, J, z    y, K, z    y, X, z   
y, Y, z    y, C, z    y, D, z   
y, P, z

Proof of Theorem metcnp3
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metcn.2 . . . . 5  |-  J  =  ( MetOpen `  C )
21mopntopon 17985 . . . 4  |-  ( C  e.  ( * Met `  X )  ->  J  e.  (TopOn `  X )
)
323ad2ant1 976 . . 3  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  ->  J  e.  (TopOn `  X )
)
4 metcn.4 . . . . 5  |-  K  =  ( MetOpen `  D )
54mopnval 17984 . . . 4  |-  ( D  e.  ( * Met `  Y )  ->  K  =  ( topGen `  ran  ( ball `  D )
) )
653ad2ant2 977 . . 3  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  ->  K  =  ( topGen `  ran  ( ball `  D )
) )
74mopntopon 17985 . . . 4  |-  ( D  e.  ( * Met `  Y )  ->  K  e.  (TopOn `  Y )
)
873ad2ant2 977 . . 3  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  ->  K  e.  (TopOn `  Y )
)
9 simp3 957 . . 3  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  ->  P  e.  X )
103, 6, 8, 9tgcnp 16983 . 2  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. u  e.  ran  ( ball `  D ) ( ( F `  P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) ) ) )
11 simpll2 995 . . . . . . . 8  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  ->  D  e.  ( * Met `  Y ) )
12 simplr 731 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  ->  F : X --> Y )
13 simpll3 996 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  ->  P  e.  X )
14 ffvelrn 5663 . . . . . . . . 9  |-  ( ( F : X --> Y  /\  P  e.  X )  ->  ( F `  P
)  e.  Y )
1512, 13, 14syl2anc 642 . . . . . . . 8  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( F `  P
)  e.  Y )
16 simpr 447 . . . . . . . 8  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
y  e.  RR+ )
17 blcntr 17964 . . . . . . . 8  |-  ( ( D  e.  ( * Met `  Y )  /\  ( F `  P )  e.  Y  /\  y  e.  RR+ )  ->  ( F `  P
)  e.  ( ( F `  P ) ( ball `  D
) y ) )
1811, 15, 16, 17syl3anc 1182 . . . . . . 7  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( F `  P
)  e.  ( ( F `  P ) ( ball `  D
) y ) )
19 rpxr 10361 . . . . . . . . . 10  |-  ( y  e.  RR+  ->  y  e. 
RR* )
2019adantl 452 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
y  e.  RR* )
21 blelrn 17967 . . . . . . . . 9  |-  ( ( D  e.  ( * Met `  Y )  /\  ( F `  P )  e.  Y  /\  y  e.  RR* )  ->  ( ( F `  P ) ( ball `  D ) y )  e.  ran  ( ball `  D ) )
2211, 15, 20, 21syl3anc 1182 . . . . . . . 8  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( ( F `  P ) ( ball `  D ) y )  e.  ran  ( ball `  D ) )
23 eleq2 2344 . . . . . . . . . 10  |-  ( u  =  ( ( F `
 P ) (
ball `  D )
y )  ->  (
( F `  P
)  e.  u  <->  ( F `  P )  e.  ( ( F `  P
) ( ball `  D
) y ) ) )
24 sseq2 3200 . . . . . . . . . . . 12  |-  ( u  =  ( ( F `
 P ) (
ball `  D )
y )  ->  (
( F " v
)  C_  u  <->  ( F " v )  C_  (
( F `  P
) ( ball `  D
) y ) ) )
2524anbi2d 684 . . . . . . . . . . 11  |-  ( u  =  ( ( F `
 P ) (
ball `  D )
y )  ->  (
( P  e.  v  /\  ( F "
v )  C_  u
)  <->  ( P  e.  v  /\  ( F
" v )  C_  ( ( F `  P ) ( ball `  D ) y ) ) ) )
2625rexbidv 2564 . . . . . . . . . 10  |-  ( u  =  ( ( F `
 P ) (
ball `  D )
y )  ->  ( E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )  <->  E. v  e.  J  ( P  e.  v  /\  ( F " v ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) ) )
2723, 26imbi12d 311 . . . . . . . . 9  |-  ( u  =  ( ( F `
 P ) (
ball `  D )
y )  ->  (
( ( F `  P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
)  <->  ( ( F `
 P )  e.  ( ( F `  P ) ( ball `  D ) y )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  ( ( F `  P )
( ball `  D )
y ) ) ) ) )
2827rspcv 2880 . . . . . . . 8  |-  ( ( ( F `  P
) ( ball `  D
) y )  e. 
ran  ( ball `  D
)  ->  ( A. u  e.  ran  ( ball `  D ) ( ( F `  P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) )  -> 
( ( F `  P )  e.  ( ( F `  P
) ( ball `  D
) y )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  ( ( F `  P )
( ball `  D )
y ) ) ) ) )
2922, 28syl 15 . . . . . . 7  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( A. u  e. 
ran  ( ball `  D
) ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) )  -> 
( ( F `  P )  e.  ( ( F `  P
) ( ball `  D
) y )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  ( ( F `  P )
( ball `  D )
y ) ) ) ) )
3018, 29mpid 37 . . . . . 6  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( A. u  e. 
ran  ( ball `  D
) ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  ( ( F `  P )
( ball `  D )
y ) ) ) )
31 simpl1 958 . . . . . . . . . . . 12  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  ->  C  e.  ( * Met `  X ) )
3231ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  v  e.  J ) )  /\  P  e.  v )  ->  C  e.  ( * Met `  X
) )
33 simplrr 737 . . . . . . . . . . 11  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  v  e.  J ) )  /\  P  e.  v )  ->  v  e.  J )
34 simpr 447 . . . . . . . . . . 11  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  v  e.  J ) )  /\  P  e.  v )  ->  P  e.  v )
351mopni2 18039 . . . . . . . . . . 11  |-  ( ( C  e.  ( * Met `  X )  /\  v  e.  J  /\  P  e.  v
)  ->  E. z  e.  RR+  ( P (
ball `  C )
z )  C_  v
)
3632, 33, 34, 35syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  v  e.  J ) )  /\  P  e.  v )  ->  E. z  e.  RR+  ( P (
ball `  C )
z )  C_  v
)
37 imass2 5049 . . . . . . . . . . . . 13  |-  ( ( P ( ball `  C
) z )  C_  v  ->  ( F "
( P ( ball `  C ) z ) )  C_  ( F " v ) )
38 sstr2 3186 . . . . . . . . . . . . 13  |-  ( ( F " ( P ( ball `  C
) z ) ) 
C_  ( F "
v )  ->  (
( F " v
)  C_  ( ( F `  P )
( ball `  D )
y )  ->  ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y ) ) )
3937, 38syl 15 . . . . . . . . . . . 12  |-  ( ( P ( ball `  C
) z )  C_  v  ->  ( ( F
" v )  C_  ( ( F `  P ) ( ball `  D ) y )  ->  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) )
4039com12 27 . . . . . . . . . . 11  |-  ( ( F " v ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  ->  (
( P ( ball `  C ) z ) 
C_  v  ->  ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y ) ) )
4140reximdv 2654 . . . . . . . . . 10  |-  ( ( F " v ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  ->  ( E. z  e.  RR+  ( P ( ball `  C
) z )  C_  v  ->  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )
4236, 41syl5com 26 . . . . . . . . 9  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  v  e.  J ) )  /\  P  e.  v )  ->  (
( F " v
)  C_  ( ( F `  P )
( ball `  D )
y )  ->  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) )
4342expimpd 586 . . . . . . . 8  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  v  e.  J ) )  ->  ( ( P  e.  v  /\  ( F " v ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) )  ->  E. z  e.  RR+  ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y ) ) )
4443expr 598 . . . . . . 7  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( v  e.  J  ->  ( ( P  e.  v  /\  ( F
" v )  C_  ( ( F `  P ) ( ball `  D ) y ) )  ->  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) ) )
4544rexlimdv 2666 . . . . . 6  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( E. v  e.  J  ( P  e.  v  /\  ( F
" v )  C_  ( ( F `  P ) ( ball `  D ) y ) )  ->  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) )
4630, 45syld 40 . . . . 5  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( A. u  e. 
ran  ( ball `  D
) ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) )  ->  E. z  e.  RR+  ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y ) ) )
4746ralrimdva 2633 . . . 4  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( A. u  e. 
ran  ( ball `  D
) ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) )  ->  A. y  e.  RR+  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) )
48 simpl2 959 . . . . . . . . 9  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  ->  D  e.  ( * Met `  Y ) )
49 blss 17972 . . . . . . . . . 10  |-  ( ( D  e.  ( * Met `  Y )  /\  u  e.  ran  ( ball `  D )  /\  ( F `  P
)  e.  u )  ->  E. y  e.  RR+  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )
50493expib 1154 . . . . . . . . 9  |-  ( D  e.  ( * Met `  Y )  ->  (
( u  e.  ran  ( ball `  D )  /\  ( F `  P
)  e.  u )  ->  E. y  e.  RR+  ( ( F `  P ) ( ball `  D ) y ) 
C_  u ) )
5148, 50syl 15 . . . . . . . 8  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( ( u  e. 
ran  ( ball `  D
)  /\  ( F `  P )  e.  u
)  ->  E. y  e.  RR+  ( ( F `
 P ) (
ball `  D )
y )  C_  u
) )
52 r19.29r 2684 . . . . . . . . . 10  |-  ( ( E. y  e.  RR+  ( ( F `  P ) ( ball `  D ) y ) 
C_  u  /\  A. y  e.  RR+  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) )  ->  E. y  e.  RR+  (
( ( F `  P ) ( ball `  D ) y ) 
C_  u  /\  E. z  e.  RR+  ( F
" ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y ) ) )
5331ad3antrrr 710 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  C  e.  ( * Met `  X
) )
5413ad2antrr 706 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  P  e.  X
)
55 rpxr 10361 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  RR+  ->  z  e. 
RR* )
5655ad2antrl 708 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  z  e.  RR* )
571blopn 18046 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  ( * Met `  X )  /\  P  e.  X  /\  z  e.  RR* )  ->  ( P ( ball `  C ) z )  e.  J )
5853, 54, 56, 57syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  ( P (
ball `  C )
z )  e.  J
)
59 simprl 732 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  z  e.  RR+ )
60 blcntr 17964 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  ( * Met `  X )  /\  P  e.  X  /\  z  e.  RR+ )  ->  P  e.  ( P ( ball `  C
) z ) )
6153, 54, 59, 60syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  P  e.  ( P ( ball `  C
) z ) )
62 sstr 3187 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  /\  (
( F `  P
) ( ball `  D
) y )  C_  u )  ->  ( F " ( P (
ball `  C )
z ) )  C_  u )
6362ad2ant2l 726 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) )  /\  ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u ) )  ->  ( F "
( P ( ball `  C ) z ) )  C_  u )
6463ancoms 439 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  ( F "
( P ( ball `  C ) z ) )  C_  u )
65 eleq2 2344 . . . . . . . . . . . . . . . . 17  |-  ( v  =  ( P (
ball `  C )
z )  ->  ( P  e.  v  <->  P  e.  ( P ( ball `  C
) z ) ) )
66 imaeq2 5008 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  ( P (
ball `  C )
z )  ->  ( F " v )  =  ( F " ( P ( ball `  C
) z ) ) )
6766sseq1d 3205 . . . . . . . . . . . . . . . . 17  |-  ( v  =  ( P (
ball `  C )
z )  ->  (
( F " v
)  C_  u  <->  ( F " ( P ( ball `  C ) z ) )  C_  u )
)
6865, 67anbi12d 691 . . . . . . . . . . . . . . . 16  |-  ( v  =  ( P (
ball `  C )
z )  ->  (
( P  e.  v  /\  ( F "
v )  C_  u
)  <->  ( P  e.  ( P ( ball `  C ) z )  /\  ( F "
( P ( ball `  C ) z ) )  C_  u )
) )
6968rspcev 2884 . . . . . . . . . . . . . . 15  |-  ( ( ( P ( ball `  C ) z )  e.  J  /\  ( P  e.  ( P
( ball `  C )
z )  /\  ( F " ( P (
ball `  C )
z ) )  C_  u ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
)
7058, 61, 64, 69syl12anc 1180 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
)
7170expr 598 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  z  e.  RR+ )  -> 
( ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) )
7271rexlimdva 2667 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  -> 
( E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) )
7372expimpd 586 . . . . . . . . . . 11  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( ( ( ( F `  P ) ( ball `  D
) y )  C_  u  /\  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
) )
7473rexlimdva 2667 . . . . . . . . . 10  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( E. y  e.  RR+  ( ( ( F `
 P ) (
ball `  D )
y )  C_  u  /\  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
) )
7552, 74syl5 28 . . . . . . . . 9  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( ( E. y  e.  RR+  ( ( F `
 P ) (
ball `  D )
y )  C_  u  /\  A. y  e.  RR+  E. z  e.  RR+  ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) )
7675exp3a 425 . . . . . . . 8  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( E. y  e.  RR+  ( ( F `  P ) ( ball `  D ) y ) 
C_  u  ->  ( A. y  e.  RR+  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) ) )
7751, 76syld 40 . . . . . . 7  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( ( u  e. 
ran  ( ball `  D
)  /\  ( F `  P )  e.  u
)  ->  ( A. y  e.  RR+  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) ) )
7877com23 72 . . . . . 6  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  ->  (
( u  e.  ran  ( ball `  D )  /\  ( F `  P
)  e.  u )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
) ) )
7978exp4a 589 . . . . 5  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  ->  (
u  e.  ran  ( ball `  D )  -> 
( ( F `  P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
) ) ) )
8079ralrimdv 2632 . . . 4  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  ->  A. u  e.  ran  ( ball `  D
) ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) ) )
8147, 80impbid 183 . . 3  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( A. u  e. 
ran  ( ball `  D
) ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) )  <->  A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )
8281pm5.32da 622 . 2  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  ->  (
( F : X --> Y  /\  A. u  e. 
ran  ( ball `  D
) ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) )  <-> 
( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) ) )
8310, 82bitrd 244 1  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    C_ wss 3152   ran crn 4690   "cima 4692   -->wf 5251   ` cfv 5255  (class class class)co 5858   RR*cxr 8866   RR+crp 10354   topGenctg 13342   * Metcxmt 16369   ballcbl 16371   MetOpencmopn 16372  TopOnctopon 16632    CnP ccnp 16955
This theorem is referenced by:  metcnp  18087
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-topgen 13344  df-xmet 16373  df-bl 16375  df-mopn 16376  df-top 16636  df-bases 16638  df-topon 16639  df-cnp 16958
  Copyright terms: Public domain W3C validator